Search Results

Now showing 1 - 2 of 2
  • Item
    Reliable averaging for the primal variable in the Courant FEM and hierarchical error estimators on red-refined meshes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Carstensen, Carsten; Eigel, Martin
    A hierarchical a posteriori error estimator for the first-order finite element method (FEM) on a red-refined triangular mesh is presented for the 2D Poisson model problem. Reliability and efficiency with some explicit constant is proved for triangulations with inner angles smaller than or equal to π/2 . The error estimator does not rely on any saturation assumption and is valid even in the pre-asymptotic regime on arbitrarily coarse meshes. The evaluation of the estimator is a simple post-processing of the piecewise linear FEM without any extra solve plus a higher-order approximation term. The results also allows the striking observation that arbitrary local averaging of the primal variable leads to a reliable and efficient error estimation. Several numerical experiments illustrate the performance of the proposed a posteriori error estimator for computational benchmarks.
  • Item
    On the convergence of adaptive stochastic collocation for elliptic partial differential equations with affine diffusion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Eigel, Martin; Ernst, Oliver; Sprungk, Björn; Tamellini, Lorenzo
    Convergence of an adaptive collocation method for the stationary parametric diffusion equation with finite-dimensional affine coefficient is shown. The adaptive algorithm relies on a recently introduced residual-based reliable a posteriori error estimator. For the convergence proof, a strategy recently used for a stochastic Galerkin method with an hierarchical error estimator is transferred to the collocation setting.