Search Results

Now showing 1 - 6 of 6
  • Item
    From atomistic tight-binding theory to macroscale drift–diffusion: Multiscale modeling and numerical simulation of uni-polar charge transport in (In,Ga)N devices with random fluctuations
    (Melville, NY : American Inst. of Physics, 2021) O’Donovan, Michael; Chaudhuri, Debapriya; Streckenbach, Timo; Farrell, Patricio; Schulz, Stefan; Koprucki, Thomas
    Random alloy fluctuations significantly affect the electronic, optical, and transport properties of (In,Ga)N-based optoelectronic devices. Transport calculations accounting for alloy fluctuations currently use a combination of modified continuum-based models, which neglect to a large extent atomistic effects. In this work, we present a model that bridges the gap between atomistic theory and macroscopic transport models. To do so, we combine atomistic tight-binding theory and continuum-based drift–diffusion solvers, where quantum corrections are included via the localization landscape method. We outline the ingredients of this framework in detail and present first results for uni-polar electron transport in single and multi- (In,Ga)N quantum well systems. Overall, our results reveal that both random alloy fluctuations and quantum corrections significantly affect the current–voltage characteristics of uni-polar electron transport in such devices. However, our investigations indicate that the importance of quantum corrections and random alloy fluctuations can be different for single and multi-quantum well systems.
  • Item
    Comparison of finite difference and finite volume simulations for a sc-drying mass transport model
    (Basel : MDPI AG, 2020) Selmer, Ilka; Farrell, Patricio; Smirnova, Irina; Gurikov, Pavel
    Different numerical solutions of a previously developed mass transport model for supercritical drying of aerogel particles in a packed bed [Part 1: Selmer et al. 2018, Part 2: Selmer et al. 2019] are compared. Two finite difference discretizations and a finite volume method were used. The finite volume method showed a higher overall accuracy, in the form of lower overall Euclidean norm (l2) and maximum norm (l∞) errors, as well as lower mole balance errors compared to the finite difference methods. Additionally, the finite volume method was more efficient when the condition numbers of the linear systems to be solved were considered. In case of fine grids, the computation time of the finite difference methods was slightly faster but for 16 or fewer nodes the finite volume method was superior. Overall, the finite volume method is preferable for the numerical solution of the described drying model for aerogel particles in a packed bed. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Assessing the quality of the excess chemical potential flux scheme for degenerate semiconductor device simulation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Abdel, Dilara; Farrell, Patricio; Fuhrmann, Jürgen
    The van Roosbroeck system models current flows in (non-)degenerate semiconductor devices. Focusing on the stationary model, we compare the excess chemical potential discretization scheme, a flux approximation which is based on a modification of the drift term in the current densities, with another state-of-the-art Scharfetter-Gummel scheme, namely the diffusion-enhanced scheme. Physically, the diffusion-enhanced scheme can be interpreted as a flux approximation which modifies the thermal voltage. As a reference solution we consider an implicitly defined integral flux, using Blakemore statistics. The integral flux refers to the exact solution of a local two point boundary value problem for the continuous current density and can be interpreted as a generalized Scharfetter-Gummel scheme. All numerical discretization schemes can be used within a Voronoi finite volume method to simulate charge transport in (non-)degenerate semiconductor devices. The investigation includes the analysis of Taylor expansions, a derivation of error estimates and a visualization of errors in local flux approximations to extend previous discussions. Additionally, drift-diffusion simulations of a p-i-n device are performed.
  • Item
    Modeling and simulation of the lateral photovoltage scanning method
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Farrell, Patricio; Kayser, Stefan; Rotundo, Nella
    The fast, cheap and nondestructive lateral photovoltage scanning (LPS) method detects inhomogeneities in semiconductors crystals. The goal of this paper is to model and simulate this technique for a given doping profile. Our model is based on the semiconductor device equations combined with a nonlinear boundary condition, modelling a volt meter. To validate our 2D and 3D finite volume simulations, we use theory developed by Tauc [21] to derive three analytical predictions which our simulation results corroborate, even for anisotropic 2D and 3D meshes. Our code runs about two orders of magnitudes faster than earlier implementations based on commercial software [15]. It also performs well for small doping concentrations which previously could not be simulated at all due to numerical instabilities. Our simulations provide experimentalists with reference laser powers for which meaningful voltages can still be measured. For higher laser power the screening effect does not allow this anymore.
  • Item
    Detecting striations via the lateral photovoltage scanning method without screening effect
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Kayser, Stefan; Farrell, Patricio; Rotundo, Nella
    The lateral photovoltage scanning method (LPS) detects doping inhomogeneities in semiconductors such as Si, Ge and Si(x)Ge(1-x) in a cheap, fast and nondestructive manner. LPS relies on the bulk photovoltaic effect and thus can detect any physical quantity affecting the band profiles of the sample. LPS finite volume simulation using commercial software suffer from long simulation times and convergence instabilities. We present here an open-source finite volume simulation for a 2D Si sample using the ddfermi simulator. For low injection conditions we show that the LPS voltage is proportional to the doping gradient as previous theory suggested under certain conditions. For higher injection conditions we directly show how the LPS voltage and the doping gradient differ and link the physical effect of lower local resolution to the screening effect. Previously, the loss of local resolution was assumed to be only connected to the enlargement of the excess charge carrier distribution.
  • Item
    Modelling charge transport in perovskite solar cells: Potential-based and limiting ion depletion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Abdel, Dilara; Vágner, Petr; Fuhrmann, Jürgen; Farrell, Patricio
    From Maxwell--Stefan diffusion and general electrostatics, we derive a drift-diffusion model for charge transport in perovskite solar cells (PSCs) where any ion in the perovskite layer may flexibly be chosen to be mobile or immobile. Unlike other models in the literature, our model is based on quasi Fermi potentials instead of densities. This allows to easily include nonlinear diffusion (based on Fermi--Dirac, Gauss--Fermi or Blakemore statistics for example) as well as limit the ion depletion (via the Fermi--Dirac integral of order-1). The latter will be motivated by a grand-canonical formalism of ideal lattice gas. Furthermore, our model allows to use different statistics for different species. We discuss the thermodynamic equilibrium, electroneutrality as well as generation/recombination. Finally, we present numerical finite volume simulations to underline the importance of limiting ion depletion.