Search Results

Now showing 1 - 6 of 6
  • Item
    Charge carrier density, mobility, and Seebeck coefficient of melt-grown bulk ZnGa2O4 single crystals
    (New York, NY : American Inst. of Physics, 2020) Boy, Johannes; Handwerg, Martin; Mitdank, Rüdiger; Galazka, Zbigniew; Fischer, Saskia F.
    The temperature dependence of the charge carrier density, mobility, and Seebeck coefficient of melt-grown, bulk ZnGa2O4 single crystals was measured between 10 K and 310 K. The electrical conductivity at room temperature is about σ = 286 S/cm due to a high electron concentration of n = 3.26 × 1019 cm−3 caused by unintentional doping. The mobility at room temperature is μ = 55 cm2/V s, whereas the scattering on ionized impurities limits the mobility to μ = 62 cm2/Vs for temperatures lower than 180 K. The Seebeck coefficient relative to aluminum at room temperature is SZnGa2O4−Al = (−125 ± 2) μV/K and shows a temperature dependence as expected for degenerate semiconductors. At low temperatures, around 60 K, we observed the maximum Seebeck coefficient due to the phonon drag effect. © 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
  • Item
    Free-standing millimetre-long Bi2Te3 sub-micron belts catalyzed by TiO2 nanoparticles
    (New York, NY [u.a.] : Springer, 2016) Schönherr, Piet; Zhang, Fengyu; Kojda, Danny; Mitdank, Rüdiger; Albrecht, Martin; Fischer, Saskia F.; Hesjedal, Thorsten
    Physical vapour deposition (PVD) is used to grow millimetre-long Bi2Te3 sub-micron belts catalysed by TiO2 nanoparticles. The catalytic efficiency of TiO2 nanoparticles for the nanostructure growth is compared with the catalyst-free growth employing scanning electron microscopy. The catalyst-coated and catalyst-free substrates are arranged side-by-side, and overgrown at the same time, to assure identical growth conditions in the PVD furnace. It is found that the catalyst enhances the yield of the belts. Very long belts were achieved with a growth rate of 28 nm/min. A ∼1-mm-long belt with a rectangular cross section was obtained after 8 h of growth. The thickness and width were determined by atomic force microscopy, and their ratio is ∼1:10. The chemical composition was determined to be stoichiometric Bi2Te3 using energy-dispersive X-ray spectroscopy. Temperature-dependent conductivity measurements show a characteristic increase of the conductivity at low temperatures. The room temperature conductivity of 0.20 × 10(5) S m (-1) indicates an excellent sample quality.
  • Item
    Temperature dependence of the Seebeck coefficient of epitaxial β -Ga2O3 thin films
    (Melville, NY : AIP Publ., 2019) Boy, Johannes; Handwerg, Martin; Ahrling, Robin; Mitdank, Rüdiger; Wagner, Günter; Galazka, Zbigniew; Fischer, Saskia F.
    The temperature dependence of the Seebeck coefficient of homoepitaxial metal organic vapor phase grown, silicon doped β-Ga 2 O 3 thin films was measured relative to aluminum. For room temperature, we found the relative Seebeck coefficient of Sβ-Ga2O3-Al=(-300±20) μV/K. At high bath temperatures T > 240 K, the scattering is determined by electron-phonon-interaction. At lower bath temperatures between T = 100 K and T = 300 K, an increase in the magnitude of the Seebeck coefficient is explained in the frame of Stratton's formula. The influence of different scattering mechanisms on the magnitude of the Seebeck coefficient is discussed and compared with Hall measurement results. © 2019 Author(s).
  • Item
    Transport Properties and Finite Size Effects in β-Ga2O3 Thin Films
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Ahrling, Robin; Boy, Johannes; Handwerg, Martin; Chiatti, Olivio; Mitdank, Rüdiger; Wagner, Günter; Galazka, Zbigniew; Fischer, Saskia F.
    Thin films of the wide band gap semiconductor β-Ga2O3 have a high potential for applications in transparent electronics and high power devices. However, the role of interfaces remains to be explored. Here, we report on fundamental limits of transport properties in thin films. The conductivities, Hall densities and mobilities in thin homoepitaxially MOVPE grown (100)-orientated β-Ga2O3 films were measured as a function of temperature and film thickness. At room temperature, the electron mobilities ((115 ± 10) cm2/Vs) in thicker films (>150 nm) are comparable to the best of bulk. However, the mobility is strongly reduced by more than two orders of magnitude with decreasing film thickness ((5.5 ± 0.5) cm2/Vs for a 28 nm thin film). We find that the commonly applied classical Fuchs-Sondheimer model does not explain sufficiently the contribution of electron scattering at the film surfaces. Instead, by applying an electron wave model by Bergmann, a contribution to the mobility suppression due to the large de Broglie wavelength in β-Ga2O3 is proposed as a limiting quantum mechanical size effect.
  • Item
    Superconducting ferecrystals: Turbostratically disordered atomic-scale layered (PbSe)1.14(NbSe2)n thin films
    (London : Nature Publishing Group, 2016) Grosse, Corinna; Alemayehu, Matti B.; Falmbigl, Matthias; Mogilatenko, Anna; Chiatti, Olivio; Johnson, David C.; Fischer, Saskia F.
    Hybrid electronic heterostructure films of semi- and superconducting layers possess very different properties from their bulk counterparts. Here, we demonstrate superconductivity in ferecrystals: turbostratically disordered atomic-scale layered structures of single-, bi- and trilayers of NbSe2 separated by PbSe layers. The turbostratic (orientation) disorder between individual layers does not destroy superconductivity. Our method of fabricating artificial sequences of atomic-scale 2D layers, structurally independent of their neighbours in the growth direction, opens up new possibilities of stacking arbitrary numbers of hybrid layers which are not available otherwise, because epitaxial strain is avoided. The observation of superconductivity and systematic Tc changes with nanostructure make this synthesis approach of particular interest for realizing hybrid systems in the search of 2D superconductivity and the design of novel electronic heterostructures.
  • Item
    2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes
    (London : Nature Publishing Group, 2016) Chiatti, Olivio; Riha, Christian; Lawrenz, Dominic; Busch, Marco; Dusari, Srujana; Sánchez-Barriga, Jaime; Mogilatenko, Anna; Yashina, Lada V.; Valencia, Sergio; Ünal, Akin A.; Rader, Oliver; Fischer, Saskia F.
    Low-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼1019 cm−3) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction. However, in the metallic-like case this analysis fails and additional two-dimensional contributions need to be accounted for. Shubnikov-de Haas oscillations and quantized Hall resistance prove as strong indications for the two-dimensional layered metallic behavior. Temperature-dependent magnetotransport properties of high-quality Bi2Se3 single crystalline exfoliated macro and micro flakes are combined with high resolution transmission electron microscopy and energy-dispersive x-ray spectroscopy, confirming the structure and stoichiometry. Angle-resolved photoemission spectroscopy proves a single-Dirac-cone surface state and a well-defined bulk band gap in topological insulating state. Spatially resolved core-level photoelectron microscopy demonstrates the surface stability.