Search Results

Now showing 1 - 2 of 2
  • Item
    Phenomenology of iron-assisted ion beam pattern formation on Si(001)
    (Bristol : IOP, 2011) MacKo, S.; Frost, F.; Engler, M.; Hirsch, D.; Höche, T.; Grenzer, J.; Michely, T.
    Pattern formation on Si(001) through 2 keV Kr+ ion beam erosion of Si(001) at an incident angle of # = 30° and in the presence of sputter codeposition or co-evaporation of Fe is investigated by using in situ scanning tunneling microscopy, ex situ atomic force microscopy and electron microscopy. The phenomenology of pattern formation is presented, and experiments are conducted to rule out or determine the processes of relevance in ion beam pattern formation on Si(001) with impurities. Special attention is given to the determination of morphological phase boundaries and their origin. Height fluctuations, local flux variations, induced chemical inhomogeneities, silicide formation and ensuing composition-dependent sputtering are found to be of relevance for pattern formation.
  • Item
    Iron-assisted ion beam patterning of Si(001) in the crystalline regime
    (Bristol : IOP, 2012) Macko, S.; Grenzer, J.; Frost, F.; Engler, M.; Hirsch, D.; Fritzsche, M.; Mücklich, A.; Michely, T.
    We present ion beam erosion experiments on Si(001) with simultaneous sputter co-deposition of steel at 660 K. At this temperature, the sample remains within the crystalline regime during ion exposure and pattern formation takes place by phase separation of Si and iron-silicide. After an ion fluence of F ≈ 5.9×10 21 ions m -2, investigations by atomic force microscopy and scanning electron microscopy identify sponge, segmented wall and pillar patterns with high aspect ratios and heights of up to 200 nm. Grazing incidence x-ray diffraction and transmission electron microscopy reveal the structures to be composed of polycrystalline iron-silicide. The observed pattern formation is compared to that in the range of 140-440K under otherwise identical conditions, where a thin amorphous layer forms due to ion bombardment.