Search Results

Now showing 1 - 9 of 9
  • Item
    Discretization scheme for drift-diffusion equations with a generalized Einstein relation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Koprucki, Thomas; Gärtner, Klaus
    Inspired by organic semiconductor models based on hopping transport introducing Gauss-Fermi integrals a nonlinear generalization of the classical Scharfetter-Gummel scheme is derived for the distribution function F(n)=1/(exp(-n)+y). This function provides an approximation of the Fermi-Dirac integrals of different order and restricted argument ranges. The scheme requires the solution of a nonlinear equation per edge and continuity equation to calculate the edge currents. In the current formula the density-dependent diffusion enhancement factor, resulting from the generalized Einstein relation, shows up as a weighting factor. Additionally the current modifies the argument of the Bernoulli functions
  • Item
    Existence of bounded discrete steady state solutions of the van Roosbroeck system with monotone Fermi-Dirac statistic functions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Gärtner, Klaus
    If the statistic function is modified, the equations can be derived by a variational formulation or just using a generalized Einstein relation. In both cases a dissipative generalization of the Scharfetter-Gummel scheme citeSch_Gu, understood as a one-dimensional constant current approximation, is derived for strictly monotone coefficient functions in the elliptic operator $nabla cdot bal ff(v) nabla $, $v$ chemical potential, while the hole density is defined by $p=cal F(v)le e^v.$ A closed form integration of the governing equation would simplify the practical use, but mean value theorem based results are sufficient to prove existence of bounded discrete steady state solutions on any boundary conforming Delaunay grid. These results hold for any piecewise, continuous, and monotone approximation of $bal ff(v)$ and $cal F(v)$.
  • Item
    Feel the heat: Nonlinear electrothermal feedback in organic LEDs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Fischer, Axel; Koprucki, Thomas; Gärtner, Klaus; Tietze, Max L.; Brückner, Jacqueline; Lüssem, Björn; Leo, Karl; Glitzky, Annegret; Scholz, Reinhard
    For lighting applications, Organic light-emitting diodes (OLED) need much higher brightness than for displays, leading to self-heating. Due to the temperature-activated transport in organic semiconductors, this can result in brightness inhomogeneities and catastrophic failure. Here, we show that due to the strong electrothermal feedback of OLEDs, the common spatial current and voltage distribution is completely changed, requiring advanced device modeling and operation concepts. Our study clearly demonstrates the effect of negative differential resistance (NDR) in OLEDs induced by self-heating. As a consequence, for increasing voltage, regions with declining voltages are propagating through the device, and even more interestingly, a part of these regions show even decreasing currents, leading to strong local variation in luminance. The expected breakthrough of OLED lighting technology will require an improved price performance ratio, and the realization of modules with very high brightness but untainted appearance is considered to be an essential step into this direction. Thus, a deeper understanding of the control of electrothermal feedback will help to make OLEDs in lighting more competitive.
  • Item
    3D boundary recovery by constrained Delaunay tetrahedralization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Si, Hang; Gärtner, Klaus
    Three-dimensional boundary recovery is a fundamental problem in mesh generation. In this paper, we propose a practical algorithm for solving this problem. Our algorithm is based on the construction of a it constrained Delaunay tetrahedralization (CDT) for a set of constraints (segments and facets). The algorithm adds additional points (so-called Steiner points) on segments only. The Steiner points are chosen in such a way that the resulting subsegments are Delaunay and their lengths are not unnecessarily short. It is theoretically guaranteed that the facets can be recovered without using Steiner points. The complexity of this algorithm is analyzed. The proposed algorithm has been implemented. Its performance is reported through various application examples
  • Item
    Energy estimates for continuous and discretized electro-reaction-diffusion systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Glitzky, Annegret; Gärtner, Klaus
    We consider electro-reaction-diffusion systems consisting of continuity equations for a finite number of species coupled with a Poisson equation. We take into account heterostructures, anisotropic materials and rather general statistic relations. We investigate thermodynamic equilibria and prove for solutions to the evolution system the monotone and exponential decay of the free energy to its equilibrium value. Here the essential idea is an estimate of the free energy by the dissipation rate which is proved indirectly. The same properties are shown for an implicit time discretized version of the problem. Moreover, we provide a space discretized scheme for the electro-reaction-diffusion system which is dissipative (the free energy decays monotonously). On a fixed grid we use for each species different Voronoi boxes which are defined with respect to the anisotropy matrix occurring in the flux term of this species.
  • Item
    Existence of bounded steady state solutions to spin-polarized drift-diffusion systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Glitzky, Annegret; Gärtner, Klaus
    We study a stationary spin-polarized drift-diffusion model for semiconductor spintronic devices. This coupled system of continuity equations and a Poisson equation with mixed boundary conditions in all equations has to be considered in heterostructures. In 3D we prove the existence and boundedness of steady states. If the Dirichlet conditions are compatible or nearly compatible with thermodynamic equilibrium the solution is unique. The same properties are obtained for a space discretized version of the problem: Using a Scharfetter-Gummel scheme on 3D boundary conforming Delaunay grids we show existence, boundedness and, for small applied voltages, the uniqueness of the discrete solution.
  • Item
    Self-heating, bistability, and thermal switching in organic semiconductors
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Fischer, Axel; Pahner, Paul; Lüssem, Björn; Scholz, Reinhard; Koprucki, Thomas; Gärtner, Klaus; Glitzky, Annegret
    We demonstrate electric bistability induced by the positive feedback of self-heating onto the thermally activated conductivity in a two-terminal device based on the organic semiconductor C60. The central undoped layer with a thickness of 200 nm is embedded between thinner n-doped layers adjacent to the contacts minimizing injection barriers. The observed current-voltage characteristics follow the general theory for thermistors described by an Arrhenius-like conductivity law. Our findings including hysteresis phenomena are of general relevance for the entire material class since most organic semiconductors can be described by a thermally activated conductivity.
  • Item
    Existence of bounded discrete steady state solutions of the van Roosbroeck system on boundary conforming Delaunay grids
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Gärtner, Klaus
    The classic van Roosbroeck system describes the carrier transport in semiconductors in a drift diffusion approximation. Its analytic steady state solutions fulfill bounds for some mobility and recombination/generation models. The main goal of this paper is to establish the identical bounds for discrete in space, steady state solutions on 3d boundary conforming Delaunay grids and the classical Scharfetter-Gummel-scheme. Together with a uniqueness proof for small applied voltages and the known dissipativity (continuous as well as space and time discrete) these discretization techniques carry over the essential analytic properties to the discrete case. The proofs are of interest for deriving averaging schemes for space or state dependent material parameters, which are preserving these qualitative properties, too. To illustrate the properties of the scheme 1, 4, 16 elementary cells of a modified CoolMOS like structure are depleted by increasing the applied voltage until steady state avalanche breakdown occurs.
  • Item
    Self-heating effects in organic semiconductor devices enhanced by positive temperature feedback
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Fischer, Axel; Pahner, Paul; Lüssem, Björn; Leo, Karl; Scholz, Reinhard; Koprucki, Thomas; Fuhrmann, Jürgen; Gärtner, Klaus; Glitzky, Annegret
    We studied the influence of heating effects in an organic device containing a layer sequence of n-doped / intrinsic / n-doped C60 between crossbar metal electrodes. A strong positive feedback between current and temperature occurs at high current densities beyond 100 A/cm2, as predicted by the extended Gaussian disorder model (EGDM) applicable to organic semiconductors. These devices give a perfect setting for studying the heat transport at high power densities because C60 can withstand temperatures above 200ʿ C. Infrared images of the device and detailed numerical simulations of the heat transport demonstrate that the electrical circuit produces a superposition of a homogeneous power dissipation in the active volume and strong heat sources localized at the contact edges ...