Search Results

Now showing 1 - 4 of 4
  • Item
    Additive functionals as rough paths
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Deuschel, Jean-Dominique; Orenshtein, Tal; Perkowski, Nicolas
    We consider additive functionals of stationary Markov processes and show that under Kipnis--Varadhan type conditions they converge in rough path topology to a Stratonovich Brownian motion, with a correction to the Lévy area that can be described in terms of the asymmetry (non-reversibility) of the underlying Markov process. We apply this abstract result to three model problems: First we study random walks with random conductances under the annealed law. If we consider the Itô rough path, then we see a correction to the iterated integrals even though the underlying Markov process is reversible. If we consider the Stratonovich rough path, then there is no correction. The second example is a non-reversible Ornstein-Uhlenbeck process, while the last example is a diffusion in a periodic environment. As a technical step we prove an estimate for the p-variation of stochastic integrals with respect to martingales that can be viewed as an extension of the rough path Burkholder-Davis-Gundy inequality for local martingale rough paths of [FV08], [CF19] and [FZ18] to the case where only the integrator is a local martingale.
  • Item
    Aging for the stationary Kardar--Parisi--Zhang equation and related models
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Deuschel, Jean-Dominique; Orenshtein, Tal; Moreno Flores, Gregorio R.
    We study the aging property for stationary models in the KPZ universality class. In particular, we show aging for the stationary KPZ fixed point, the Cole-Hopf solution to the stationary KPZ equation, the height function of the stationary TASEP, last-passage percolation with boundary conditions and stationary directed polymers in the intermediate disorder regime. All of these models are shown to display a universal aging behavior characterized by the rate of decay of their correlations. As a comparison, we show aging for models in the Edwards-Wilkinson universality class where a different decay exponent is obtained. A key ingredient to our proofs is a characteristic of space-time stationarity - covariance-to-variance reduction - which allows to deduce the asymptotic behavior of the correlations of two space-time points by the one of the variances at one point. We formulate several open problems.
  • Item
    Zero-one law for directional transience of one-dimensional random walks in dynamic random environments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Orenshtein, Tal; Santos, Renato Soares dos
    We prove the trichotomy between transience to the right, transience to the left and recurrence of one-dimensional nearest-neighbour random walks in dynamic random environments under fairly general assumptions, namely: stationarity under space-time translations, ergodicity under spatial translations, and a mild ellipticity condition. In particular, the result applies to general uniformly elliptic models and also to a large class of non-uniformly elliptic cases that are i.i.d. in space and Markovian in time.
  • Item
    Rough invariance principle for delayed regenerative processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Orenshtein, Tal
    We derive an invariance principle for the lift to the rough path topology of stochastic processes with delayed regenerative increments under an optimal moment condition. An interesting feature of the result is the emergence of area anomaly, a correction term in the second level of the limiting rough path which is identified as the average stochastic area on a regeneration interval. A few applications include random walks in random environment and additive functionals of recurrent Markov chains. The result is formulated in the p-variation settings, where a rough Donsker Theorem is available under the second moment condition. The key renewal theorem is applied to obtain an optimal moment condition.