Search Results

Now showing 1 - 10 of 31
  • Item
    Efficient coupling of inhomogeneous current spreading and dynamic electro-optical models for broad-area edge-emitting semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Radziunas, Mindaugas; Zeghuzi, Anissa; Fuhrmann, Jürgen; Koprucki, Thomas; Wünsche, Hans-Jürgen; Wenzel, Hans; Bandelow, Uwe
    We extend a 2 (space) + 1 (time)-dimensional traveling wave model for broad-area edgeemitting semiconductor lasers by a model for inhomogeneous current spreading from the contact to the active zone of the laser. To speedup the performance of the device simulations, we suggest and discuss several approximations of the inhomogeneous current density in the active zone.
  • Item
    Chirped photonic crystal for spatially filtered optical feedback to a broad-area laser
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Brée, Carsten; Gailevicius, Darius; Purlys, Vytautas; Werner, Guillermo Garre; Staliunas, Kestutis; Rathsfeld, Andreas; Schmidt, Gunther; Radziunas, Mindaugas
    We derive and analyze an efficient model for reinjection of spatially filtered optical feedback from an external resonator to a broad area, edge emitting semiconductor laser diode. Spatial filtering is achieved by a chirped photonic crystal, with variable periodicity along the optical axis and negligible resonant backscattering. The optimal chirp is obtained from a genetic algorithm, which yields solutions that are robust against perturbations. Extensive numerical simulations of the composite system with our optoelectronic solver indicate that spatially filtered reinjection enhances lower-order transversal optical modes in the laser diode and, consequently, improves the spatial beam quality.
  • Item
    Traveling wave modeling, simulation and analysis of quantum-dot mode-locked semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Radziunas, Mindaugas; Vladimirov, A.G.; Viktorov, E.A.
    We analyze the dynamics of a mode-locked quantum-dot edge-emitting semiconductor laser consisting of reversely biased saturable absorber and forward biased amplifying sections. To describe spatial non-uniformity of laser parameters, optical fields and carrier distributions we use the traveling wave model, which takes into account carrier exchange processes between wetting layer and quantum dots. A comprehensive parameter study and an optical mode analysis of operation regimes are presented.
  • Item
    Time-dependent simulation of thermal lensing in high-power broad-area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Wenzel, Hans; Radziunas, Mindaugas; Fuhrmann, Jürgen; Klehr, Andreas; Bandelow, Uwe; Knigge, Andrea
    We propose a physically realistic and yet numerically applicable thermal model to account for short and long term self-heating within broad-area lasers. Although the temperature increase is small under pulsed operation, a waveguide that is formed within a few-ns-long pulse can result in a transition from a gain-guided to an index-guided structure, leading to near and far field narrowing. Under continuous wave operation the longitudinally varying temperature profile is obtained self-consistently. The resulting unfavorable narrowing of the near field can be successfully counteracted by etching trenches.
  • Item
    Dynamics of micro-integrated external-cavity diode lasers: Simulations, analysis and experiments
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Radziunas, Mindaugas; Tronciu, Vasile Z.; Luvsandamdin, Erdenetsetseg; Kürbis, Christian; Wicht, Andreas; Wenzel, Hans
    This paper reports the results of numerical and experimental investigations of the dynamics of an external cavity diode laser device composed of a semiconductor laser and a distant Bragg grating, which provides an optical feedback. Due to the influence of the feedback, this system can operate at different dynamic regimes. The traveling wave model is used for simulations and analysis of the nonlinear dynamics in the considered laser device. Based on this model, a detailed analysis of the optical modes is performed, and the stability of the stationary states is discussed. It is shown, that the results obtained from the simulation and analysis of the device are in good agreement with experimental findings.
  • Item
    Mathematical modeling and numerical simulations of diode lasers with micro-integrated external resonators
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Radziunas, Mindaugas
    This report summarizes our scientific activities within the project MANUMIEL (BMBF Program “Förderung der Wissenschaftlich-Technologischen Zusammenarbeit (WTZ) mit der Republik Moldau”, FKZ 01DK13020A). Namely, we discuss modeling of external cavity diode lasers, numerical simulations and analysis of these devices using the software package LDSL-tool, as well as the development of this software.
  • Item
    Numerical methods for accurate description of ultrashort pulses in optical fibers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Amiranashvili, Shalva; Radziunas, Mindaugas; Bandelow, Uwe; C̆iegis, Raimondas
    We consider a one-dimensional first-order nonlinear wave equation (the so-called forward Maxwell equation, FME) that applies to a few-cycle optical pulse propagating along a preferred direction in a nonlinear medium, e.g., ultrashort pulses in nonlinear fibers. The model is a good approximation to the standard second-order wave equation under assumption of weak nonlinearity. We compare FME to the commonly accepted generalized nonlinear Schrödinger equation, which quantifies the envelope of a quickly oscillating wave field based on the slowly varying envelope approximation. In our numerical example, we demonstrate that FME, in contrast to the envelope model, reveals new spectral lines when applied to few-cycle pulses. We analyze and compare pseudo-spectral numerical schemes employing symmetric splitting for both models. Finally, we adopt these schemes to a parallel computation and discuss scalability of the parallelization.
  • Item
    Efficient coupling of electro-optical and heat-transport models for broad-area semiconductor lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Radziunas, Mindaugas; Fuhrmann, Jürgen; Zeghuzi, Anissa; Wünsche, Hans-Jürgen; Koprucki, Thomas; Brée, Carsten; Wenzel, Hans; Bandelow, Uwe
    In this work, we discuss the modeling of edge-emitting high-power broad-area semiconductor lasers. We demonstrate an efficient iterative coupling of a slow heat transport (HT) model defined on multiple vertical-lateral laser cross-sections with a fast dynamic electro-optical (EO) model determined on the longitudinal-lateral domain that is a projection of the device to the active region of the laser. Whereas the HT-solver calculates temperature and thermally-induced refractive index changes, the EO-solver exploits these distributions and provides time-averaged field intensities, quasi-Fermi potentials, and carrier densities. All these time-averaged distributions are used repetitively by the HT-solver for the generation of the heat sources entering the HT problem solved in the next iteration step.
  • Item
    Numerical methods for generalized nonlinear Schrödinger equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Čiegis, Raimondas; Amiranashili, Shalva; Radziunas, Mindaugas
    We present and analyze different splitting algorithms for numerical solution of the both classical and generalized nonlinear Schrödinger equations describing propagation of wave packets with special emphasis on applications to nonlinear fiber-optics. The considered generalizations take into account the higher-order corrections of the linear differential dispersion operator as well as the saturation of nonlinearity and the self-steepening of the field envelope function. For stabilization of the pseudo-spectral splitting schemes for generalized Schrödinger equations a regularization based on the approximation of the derivatives by the low number of Fourier modes is proposed. To illustrate the theoretically predicted performance of these schemes several numerical experiments have been done.
  • Item
    Modeling and efficient simulations of broad-area edge-emitting semiconductor lasers and amplifiers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Radziunas, Mindaugas
    We present a (2+1)-dimensional partial differential equation model for spatial-lateral dynamics of edge-emitting broad-area semiconductor devices and several extensions of this model describing different physical effects. MPI-based parallelization of the resulting middlesize numerical problem is implemented and tested on the blade cluster and separate multi-core computers at the Weierstrass Institute in Berlin. It was found, that an application of 25-30 parallel processes on all considered platforms was guaranteeing a nearly optimal performance of the algorithm with the speedup around 20-25 and the efficiency of 0.7-0.8. It was also shown, that a simultaneous usage of several in-house available multi-core computers allows a further increase of the speedup without a significant loss of the efficiency. Finally, an importance of the considered problem and the efficient numerical simulations of this problem were illustrated by a few examples occurring in real world applications.