Search Results

Now showing 1 - 10 of 16
  • Item
    Balancing Health, Economy and Climate Risk in a Multi-Crisis
    (Basel : MDPI, 2021) Nathwani, Jatin; Lind, Niels; Renn, Ortwin; Schellnhuber, Hans Joachim
    In the presence of a global pandemic (COVID-19), the relentless pressure on global decision-makers is to ensure a balancing of health (reduce mortality impacts), economic goals (income for livelihood sustenance), and environmental sustainability (stabilize GHG emissions long term). The global energy supply system is a dominant contributor to the GHG burden and deeply embedded in the economy with its current share of 85%, use of fossil fuels has remained unchanged over 3 decades. A unique approach is presented to harmonizing the goals of human safety, economic development, and climate risk, respectively, through an operational tool that provides clear guidance to decision-makers in support of policy interventions for decarbonization. Improving climate change performance as an integral part of meeting human development goals allows the achievement of a country’s environmental, social, and economic well-being to be tracked and monitored. A primary contribution of this paper is to allow a transparent accounting of national performance highlighting the goals of enhancing human safety in concert with mitigation of climate risks. A measure of a country’s overall performance, combined as the Development and Climate Change Performance Index (DCI), is derived from two standardized indexes, the development index H and the Climate Change Performance Index CCPI. Data are analyzed for 55 countries comprising 65 percent of the world’s population. Through active management and monitoring, the proposed DCI can illustrate national performance to highlight a country’s current standing, rates of improvement over time, and a historical profile of progress of nations by bringing climate risk mitigation and economic well-being into better alignment.
  • Item
    Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic
    ([London] : Nature Publishing Group UK, 2020) Liu, Zhu; Ciais, Philippe; Deng, Zhu; Lei, Ruixue; Davis, Steven J.; Feng, Sha; Zheng, Bo; Cui, Duo; Dou, Xinyu; Zhu, Biqing; Guo, Rui; Ke, Piyu; Sun, Taochun; Lu, Chenxi; He, Pan; Wang, Yuan; Yue, Xu; Wang, Yilong; Lei, Yadong; Zhou, Hao; Cai, Zhaonan; Wu, Yuhui; Guo, Runtao; Han, Tingxuan; Xue, Jinjun; Boucher, Olivier; Boucher, Eulalie; Chevallier, Frédéric; Tanaka, Katsumasa; Wei, Yiming; Zhong, Haiwang; Kang, Chongqing; Zhang, Ning; Chen, Bin; Xi, Fengming; Liu, Miaomiao; Bréon, François-Marie; Lu, Yonglong; Zhang, Qiang; Guan, Dabo; Gong, Peng; Kammen, Daniel M.; He, Kebin; Schellnhuber, Hans Joachim
    The COVID-19 pandemic is impacting human activities, and in turn energy use and carbon dioxide (CO2) emissions. Here we present daily estimates of country-level CO2 emissions for different sectors based on near-real-time activity data. The key result is an abrupt 8.8% decrease in global CO2 emissions (−1551 Mt CO2) in the first half of 2020 compared to the same period in 2019. The magnitude of this decrease is larger than during previous economic downturns or World War II. The timing of emissions decreases corresponds to lockdown measures in each country. By July 1st, the pandemic’s effects on global emissions diminished as lockdown restrictions relaxed and some economic activities restarted, especially in China and several European countries, but substantial differences persist between countries, with continuing emission declines in the U.S. where coronavirus cases are still increasing substantially.
  • Item
    Teleconnections among tipping elements in the Earth system
    (London : Nature Publ. Group, 2023) Liu, Teng; Chen, Dean; Yang, Lan; Meng, Jun; Wang, Zanchenling; Ludescher, Josef; Fan, Jingfang; Yang, Saini; Chen, Deliang; Kurths, Jürgen; Chen, Xiaosong; Havlin, Shlomo; Schellnhuber, Hans Joachim
    Tipping elements are components of the Earth system that may shift abruptly and irreversibly from one state to another at specific thresholds. It is not well understood to what degree tipping of one system can influence other regions or tipping elements. Here, we propose a climate network approach to analyse the global impacts of a prominent tipping element, the Amazon Rainforest Area (ARA). We find that the ARA exhibits strong correlations with regions such as the Tibetan Plateau (TP) and West Antarctic ice sheet. Models show that the identified teleconnection propagation path between the ARA and the TP is robust under climate change. In addition, we detect that TP snow cover extent has been losing stability since 2008. We further uncover that various climate extremes between the ARA and the TP are synchronized under climate change. Our framework highlights that tipping elements can be linked and also the potential predictability of cascading tipping dynamics.
  • Item
    Reply to Ruhl and Craig: Assessing and governing extreme climate risks needs to be legitimate and democratic
    (Washington, DC : National Acad. of Sciences, 2022) Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M.
    [No abstract available]
  • Item
    Reply to Burgess et al: Catastrophic climate risks are neglected, plausible, and safe to study
    (Washington, DC : National Acad. of Sciences, 2022) Kemp, Luke; Xu, Chi; Depledge, Joanna; Ebi, Kristie L.; Gibbins, Goodwin; Kohler, Timothy A.; Rockström, Johan; Scheffer, Marten; Schellnhuber, Hans Joachim; Steffen, Will; Lenton, Timothy M.
  • Item
    Social tipping dynamics for stabilizing Earth's climate by 2050
    (2020) Otto, Ilona M.; Donges, Jonathan F.; Cremades, Roger; Bhowmik, Avit; Hewitt, Richard J.; Lucht, Wolfgang; Rockström, Johan; Allerberger, Franziska; McCaffrey, Mark; Doe, Sylvanus S.P.; Lenferna, Alex; Morán, Nerea; van Vuuren, Detlef P.; Schellnhuber, Hans Joachim
    Safely achieving the goals of the Paris Climate Agreement requires a worldwide transformation to carbon-neutral societies within the next 30 y. Accelerated technological progress and policy implementations are required to deliver emissions reductions at rates sufficiently fast to avoid crossing dangerous tipping points in the Earth's climate system. Here, we discuss and evaluate the potential of social tipping interventions (STIs) that can activate contagious processes of rapidly spreading technologies, behaviors, social norms, and structural reorganization within their functional domains that we refer to as social tipping elements (STEs). STEs are subdomains of the planetary socioeconomic system where the required disruptive change may take place and lead to a sufficiently fast reduction in anthropogenic greenhouse gas emissions. The results are based on online expert elicitation, a subsequent expert workshop, and a literature review. The STIs that could trigger the tipping of STE subsystems include 1) removing fossil-fuel subsidies and incentivizing decentralized energy generation (STE1, energy production and storage systems), 2) building carbon-neutral cities (STE2, human settlements), 3) divesting from assets linked to fossil fuels (STE3, financial markets), 4) revealing the moral implications of fossil fuels (STE4, norms and value systems), 5) strengthening climate education and engagement (STE5, education system), and 6) disclosing information on greenhouse gas emissions (STE6, information feedbacks). Our research reveals important areas of focus for larger-scale empirical and modeling efforts to better understand the potentials of harnessing social tipping dynamics for climate change mitigation.
  • Item
    Communicating sentiment and outlook reverses inaction against collective risks
    (Washington, DC : National Acad. of Sciences, 2020) Wang, Zhen; Jusup, Marko; Guo, Hao; Shi, Lei; Geček, Sunčana; Anand, Madhur; Perc, Matjaž; Bauch, Chris T.; Kurths, Jürgen; Boccaletti, Stefano; Schellnhuber, Hans Joachim
    Collective risks permeate society, triggering social dilemmas in which working toward a common goal is impeded by selfish interests. One such dilemma is mitigating runaway climate change. To study the social aspects of climate-change mitigation, we organized an experimental game and asked volunteer groups of three different sizes to invest toward a common mitigation goal. If investments reached a preset target, volunteers would avoid all consequences and convert their remaining capital into monetary payouts. In the opposite case, however, volunteers would lose all their capital with 50% probability. The dilemma was, therefore, whether to invest one's own capital or wait for others to step in. We find that communicating sentiment and outlook helps to resolve the dilemma by a fundamental shift in investment patterns. Groups in which communication is allowed invest persistently and hardly ever give up, even when their current investment deficits are substantial. The improved investment patterns are robust to group size, although larger groups are harder to coordinate, as evidenced by their overall lower success frequencies. A clustering algorithm reveals three behavioral types and shows that communication reduces the abundance of the free-riding type. Climate-change mitigation, however, is achieved mainly by cooperator and altruist types stepping up and increasing contributions as the failure looms. Meanwhile, contributions from free riders remain flat throughout the game. This reveals that the mechanisms behind avoiding collective risks depend on an interaction between behavioral type, communication, and timing.
  • Item
    Physical and virtual carbon metabolism of global cities
    ([London] : Nature Publishing Group UK, 2020) Chen, Shaoqing; Chen, Bin; Feng, Kuishuang; Liu, Zhu; Fromer, Neil; Tan, Xianchun; Alsaedi, Ahmed; Hayat, Tasawar; Weisz, Helga; Schellnhuber, Hans Joachim; Hubacek, Klaus
    Urban activities have profound and lasting effects on the global carbon balance. Here we develop a consistent metabolic approach that combines two complementary carbon accounts, the physical carbon balance and the fossil fuel-derived gaseous carbon footprint, to track carbon coming into, being added to urban stocks, and eventually leaving the city. We find that over 88% of the physical carbon in 16 global cities is imported from outside their urban boundaries, and this outsourcing of carbon is notably amplified by virtual emissions from upstream activities that contribute 33–68% to their total carbon inflows. While 13–33% of the carbon appropriated by cities is immediately combusted and released as CO2, between 8 and 24% is stored in durable household goods or becomes part of other urban stocks. Inventorying carbon consumed and stored for urban metabolism should be given more credit for the role it can play in stabilizing future global climate.
  • Item
    All options, not silver bullets, needed to limit global warming to 1.5 °C: a scenario appraisal
    (Bristol : IOP Publ., 2021-5-25) Warszawski, Lila; Kriegler, Elmar; Lenton, Timothy M.; Gaffney, Owen; Jacob, Daniela; Klingenfeld, Daniel; Koide, Ryu; Máñez Costa, María; Messner, Dirk; Nakicenovic, Nebojsa; Schellnhuber, Hans Joachim; Schlosser, Peter; Takeuchi, Kazuhiko; Van Der Leeuw, Sander; Whiteman, Gail; Rockström, Johan
    Climate science provides strong evidence of the necessity of limiting global warming to 1.5 °C, in line with the Paris Climate Agreement. The IPCC 1.5 °C special report (SR1.5) presents 414 emissions scenarios modelled for the report, of which around 50 are classified as '1.5 °C scenarios', with no or low temperature overshoot. These emission scenarios differ in their reliance on individual mitigation levers, including reduction of global energy demand, decarbonisation of energy production, development of land-management systems, and the pace and scale of deploying carbon dioxide removal (CDR) technologies. The reliance of 1.5 °C scenarios on these levers needs to be critically assessed in light of the potentials of the relevant technologies and roll-out plans. We use a set of five parameters to bundle and characterise the mitigation levers employed in the SR1.5 1.5 °C scenarios. For each of these levers, we draw on the literature to define 'medium' and 'high' upper bounds that delineate between their 'reasonable', 'challenging' and 'speculative' use by mid century. We do not find any 1.5 °C scenarios that stay within all medium upper bounds on the five mitigation levers. Scenarios most frequently 'over use' CDR with geological storage as a mitigation lever, whilst reductions of energy demand and carbon intensity of energy production are 'over used' less frequently. If we allow mitigation levers to be employed up to our high upper bounds, we are left with 22 of the SR1.5 1.5 °C scenarios with no or low overshoot. The scenarios that fulfil these criteria are characterised by greater coverage of the available mitigation levers than those scenarios that exceed at least one of the high upper bounds. When excluding the two scenarios that exceed the SR1.5 carbon budget for limiting global warming to 1.5 °C, this subset of 1.5 °C scenarios shows a range of 15–22 Gt CO2 (16–22 Gt CO2 interquartile range) for emissions in 2030. For the year of reaching net zero CO2 emissions the range is 2039–2061 (2049–2057 interquartile range).
  • Item
    Corona and the climate: A comparison of two emergencies
    (Cambridge : Cambridge Univ. Press, 2020) Vinke, Kira; Gabrysch, Sabine; Paoletti, Emanuela; Rockström, Johan; Schellnhuber, Hans Joachim
    Social media summary Lessons from the corona crisis can help manage the even more daunting challenge of anthropogenic global warming. © The Author(s), 2020.