Search Results

Now showing 1 - 10 of 47
  • Item
    Constrained evolution for a quasilinear parabolic equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In the present contribution, a feedback control law is studied for a quasilinear parabolic equation. First, we prove the well-posedness and some regularity results for the CauchyNeumann problem for this equation, modified by adding an extra term which is a multiple of the subdifferential of the distance function from a closed convex set K of L2 (Omega). Then, we consider convex sets of obstacle or double-obstacle type, and we can act on the factor of the feedback control in order to be able to reach the convex set within a finite time, by proving rigorously this property.
  • Item
    Distributed optimal control of a nonstandard system of phase field equations : dedicated to Prof. Dr. Ingo Müller on the occasion of his 75th birthday
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Colli, Pierluigi; Gilardi, Gianni; Podio-Guidugli, Paolo; Sprekels, Jürgen; Müller, Ingo
    We investigate a distributed optimal control problem for a phase field model of Cahn-Hilliard type. The model describes two-species phase segregation on an atomic lattice under the presence of diffusion; it has been introduced recently in [4], on the basis of the theory developed in [15], and consists of a system of two highly nonlinearly coupled PDEs. For this reason, standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.
  • Item
    Optimal distributed control of a nonlocal Cahn-Hilliard/Navier-Stokes system in 2D
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Frigeri, Sergio Pietro; Rocca, Elisabetta; Sprekels, Jürgen
    We study a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids coupling the Navier-Stokes system with a convective nonlocal Cahn-Hilliard equation in two dimensions of space. We apply recently proved well-posedness and regularity results in order to establish existence of optimal controls as well as first-order necessary optimality conditions for an associated optimal control problem in which a distributed control is applied to the fluid flow.
  • Item
    Optimal distributed control of a diffuse interface model of tumor growth
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen
    In this paper, a distributed optimal control problem is studied for a diffuse interface model of tumor growth which was proposed by HawkinsDaruud et al. in [25]. The model consists of a CahnHilliard equation for the tumor cell fraction 'coupled to a reaction-diffusion equation for a function phi representing the nutrientrich extracellular water volume fraction. The distributed control u monitors as a right-hand side the equation for sigma and can be interpreted as a nutrient supply or a medication, while the cost function, which is of standard tracking type, is meant to keep the tumor cell fraction under control during the evolution. We show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive the first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables.
  • Item
    Distributed optimal control of a nonstandard nonlocal phase field system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    We investigate a distributed optimal control problem for a nonlocal phase field model of viscous Cahn-Hilliard type. The model constitutes a nonlocal version of a model for two-species phase segregation on an atomic lattice under the presence of diffusion that has been studied in a series of papers by P. Podio-Guidugli and the present authors. The model consists of a highly nonlinear parabolic equation coupled to an ordinary differential equation. The latter equation contains both nonlocal and singular terms that render the analysis difficult. Standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.
  • Item
    Optimal control of semiconductor melts by traveling magnetic fields
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Nestler, Peter; Schlömer, Nico; Klein, Olaf; Sprekels, Jürgen; Tröltzsch, Fredi
    In this paper, the optimal control of traveling magnetic fields in a process of crystal growth from the melt of semiconductor materials is considered. As controls, the phase shifts of the voltage in the coils of a heater-magnet module are employed to generate Lorentz forces for stirring the crystal melt in an optimal way. By the use of a new industrial heater-magnet module, the Lorentz forces have a stronger impact on the melt than in earlier technologies. It is known from experiments that during the growth process temperature oscillations with respect to time occur in the neighborhood of the solid-liquid interface. These oscillations may strongly influence the quality of the growing single crystal. As it seems to be impossible to suppress them completely, the main goal of optimization has to be less ambitious, namely, one tries to achieve oscillations that have a small amplitude and a frequency which is sufficiently high such that the solid-liquid interface does not have enough time to react to the oscillations. In our approach, we control the oscillations at a finite number of selected points in the neighborhood of the solidification front. The system dynamics is modeled by a coupled system of partial differential equations that account for instationary heat condution, turbulent melt flow, and magnetic field. We report on numerical methods for solving this system and for the optimization of the whole process. Different objective functionals are tested to reach the goal of optimization.
  • Item
    Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen
    This paper is concerned with a phase field system of Cahn-Hilliard type that is related to a tumor growth model and consists of three equations in gianni terms of the variables order parameter, chemical potential and nutrient concentration. This system has been investigated in the recent papers citeCGH and citeCGRS gianni from the viewpoint of well-posedness, long time bhv and asymptotic convergence as two positive viscosity coefficients tend to zero at the same time. Here, we continue the analysis performed in citeCGRS by showing two independent sets of results as just one of the coefficents tends to zero, the other remaining fixed. We prove convergence results, uniqueness of solutions to the two resulting limit problems, and suitable error estimates
  • Item
    Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen
    In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn--Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we extend some recent results obtained in [Colli-Gilardi-Hilhorst 2015], letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.
  • Item
    Regularity of the solution to a nonstandard system of phase field equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    A nonstandard systems of differential equations describing two-species phase segregation is considered. This system naturally arises in the asymptotic analysis recently done by Colli, Gilardi, Krej¡cí, and Sprekels as the diffusion coefficient in the equation governing the evolution of the order parameter tends to zero. In particular, a well-posedness result is proved for the limit system. This paper deals with the above limit problem in a less general but still very significant framework and provides a very simple proof of further regularity for the solution. As a byproduct, a simple uniqueness proof is given as well.
  • Item
    Optimal boundary control of a nonstandard viscous Cahn-Hilliard system with dynamic boundary condition
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Colli, Pierluigi; Gilardi, Gianni; Sprekels, Jürgen
    In this paper, we study an optimal boundary control problem for a model for phase separation taking place in a spatial domain that was introduced by Podio-Guidugli in Ric. Mat. 55 (2006), pp. 105118. The model consists of a strongly coupled system of nonlinear parabolic differential equations, in which products between the unknown functions and their time derivatives occur that are difficult to handle analytically. In contrast to the existing control literature about this PDE system, we consider here a dynamic boundary condition involving the Laplace-Beltrami operator for the order parameter of the system, which models an additional nonconserving phase transition occurring on the surface of the domain. We show the Fréchet differentiability of the associated control-to-state operator in appropriate Banach spaces and derive results on the existence of optimal controls and on first-order necessary optimality conditions in terms of a variational inequality and the adjoint state system.