Search Results

Now showing 1 - 10 of 12
  • Item
    Mode competition in broad-ridge-waveguide lasers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Köster, Jan-Philipp; Putz, Alexander; Wenzel, Hans; Wünsche, Hans-Jürgen; Radziunas, Mindaugas; Stephan, Holger; Wilkens, Martin; Zeghuzi, Anissa; Knigge, Andrea
    The lateral brightness achievable with high-power GaAs-based laser diodes having long and broad waveguides is commonly regarded to be limited by the onset of higher-order lateral modes. For the study of the lateral-mode competition two complementary simulation tools are applied, representing different classes of approximations. The first tool bases on a completely incoherent superposition of mode intensities and disregards longitudinal effects like spatial hole burning, whereas the second tool relies on a simplified carrier transport and current flow. Both tools yield agreeing power-current characteristics that fit the data measured for 5 to 23 µm wide ridges. Also, a similarly good qualitative conformance of the near and far fields is found. However, the threshold of individual modes, the partition of power between them at a given current, and details of the near and far fields show differences. These differences are the consequence of a high sensitivity of the mode competition to details of the models and of the device structure. Nevertheless, it can be concluded concordantly that the brightness rises with increasing ridge width irrespective of the onset of more and more lateral modes. The lateral brightness 2W · mm¯¹ 1mrad¯¹ at 10MW · cm¯²2 power density on the front facet of the investigated laser with widest ridge (23 µm) is comparable with best values known from much wider broad-area lasers. In addition, we show that one of the simulation tools is able to predict beam steering and coherent beam.
  • Item
    Inequalities for Markov operators, majorization and the direction of time
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Stephan, Holger
    In this paper, we connect the following partial orders: majorization of vectors in linear algebra, majorization of functions in integration theory and the order of states of a physical system due to their temporal-causal connection. Each of these partial orders is based on two general inequalities for Markov operators and their adjoints. The first inequality compares pairs composed of a continuous function (observables) and a probability measure (statistical states), the second inequality compares pairs of probability measure. We propose two new definitions of majorization, related to these two inequalities. We derive several identities and inequalities illustrating these new definitions. They can be useful for the comparison of two measures if the Radon-Nikodym Theorem is not applicable. The problem is considered in a general setting, where probability measures are defined as convex combinations of the images of the points of a topological space (the physical state space) under the canonical embedding into its bidual. This approach allows to limit the necessary assumptions to functions and measures. In two appendices, the finite dimensional non-uniform distributed case is described, in detail. Here, majorization is connected with the comparison of general piecewise affine convex functions. Moreover, the existence of a Markov matrix, connecting two given majorizing pairs, is shown.
  • Item
    WIAS-TeSCA - Two-dimensional semi-conductor analysis package
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Gajewski, Herbert; Liero, Matthias; Nürnberg, Reiner; Stephan, Holger
    WIAS-TeSCA (Two- and three-dimensional semiconductor analysis package) is a simulation tool for the numerical simulation of charge transfer processes in semiconductor structures, especially in semiconductor lasers. It is based on the drift-diffusion model and considers a multitude of additional physical effects, like optical radiation, temperature influences and the kinetics of deep impurities. Its efficiency is based on the analytic study of the strongly nonlinear system of partial differential equations – the van Roosbroeck system – which describes the electron and hole currents. Very efficient numerical procedures for both the stationary and transient simulation have been implemented. WIAS-TeSCA has been successfully used in the research and industrial development of new electronic and optoelectronic semiconductor devices such as transistors, diodes, sensors, detectors and lasers and has already proved its worth many times in the planning and optimization of these devices. It covers a broad spectrum of applications, from heterobipolar transistor (mobile telephone systems, computer networks) through high-voltage transistors (power electronics) and semiconductor laser diodes (fiber optic communication systems, medical technology) to radiation detectors (space research, high energy physics). WIAS-TeSCA is an efficient simulation tool for analyzing and designing modern semiconductor devices with a broad range of performance that has proved successful in solving many practical problems. Particularly, it offers the possibility to calculate self-consistently the interplay of electronic, optical and thermic effects.
  • Item
    Modeling of drift-diffusion systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Stephan, Holger
    We derive drift-diffusion systems describing transport processes starting from free energy and equilibrium solutions by a unique method. We include several statistics, heterostructures and cross diffusion. The resulting systems of nonlinear partial differential equations conserve mass and positivity, and have a Lyapunov function (free energy). Using the inverse Hessian as mobility, non-degenerate diffusivity matrices turn out to be diagonal, or
  • Item
    A generalization of Lagrange's algebraic identity and connections with Jensen's inequality
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Niculescu, Constantin P.; Stephan, Holger
    We discuss a generalization of Lagrange's algebraic identity that provides valuable insights into the nature of Jensen's inequality and of many other inequalities of convexity.
  • Item
    Global weak solutions of the Navier-Stokes-Vlasov-Poisson system
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Anoschenko, Olga; Khruslov, Evgeni; Stephan, Holger
    We consider the Navier-Stokes-Vlasov-Poisson system of partial differential equations, describing the motion of a viscous incompressible fluid with small solid charged particles therein. We prove the existence of a weak global solution of the initial boundary value problem for this system.
  • Item
    Memory equations as reduced Markov processes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Stephan, Artur; Stephan, Holger
    A large class of linear memory differential equations in one dimension, where the evolution depends on the whole history, can be equivalently described as a projection of a Markov process living in a higher dimensional space. Starting with such a memory equation, we give an explicit construction of the corresponding Markov process. From a physical point of view the Markov process can be understood as the change of the type of some quasiparticles along one-way loops. Typically, the arising Markov process does not have the detailed balance property. The method leads to a more realisitc modeling of memory equations. Moreover, it carries over the large number of investigation tools for Markov processes to memory equations, like the calculation of the equilibrium state, the asymptotic behavior and so on. The method can be used for an approximative solution of some degenerate memory equations like delay differential equations.
  • Item
    Positivity and time behavior of a general linear evolution system, non-local in space and time
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Khrabustovskyi, Andrii; Stephan, Holger
    We consider a general linear reaction-diffusion system in three dimensions and time, containing diffusion (local interaction), jumps (nonlocal interaction) and memory effects. We prove a maximum principle, and positivity of the solution, and investigate its asymptotic behavior. Moreover, we give an explicite expression of the limit of the solution for large times. In order to obtain these results we use the following method: We construct a Riemannian manifold with complicated microstructure depending on a small parameter. We study the asymptotic behavior of the solution of a simple diffusion equation on this manifold as the small parameter tends to zero. It turns out that the homogenized system coincides with the original reaction-diffusion system what allows us to investigate its properties.
  • Item
    Millions of Perrin pseudoprimes including a few giants
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Stephan, Holger
    The calculation of many and large Perrin pseudoprimes is a challenge. This is mainly due to their rarity. Perrin pseudoprimes are one of the rarest known pseudoprimes. In order to calculate many such large numbers, one needs not only a fast algorithm but also an idea how most of them are structured to minimize the amount of numbers one have to test. We present a quick algorithm for testing Perrin pseudoprimes and develop some ideas on how Perrin pseudoprimes might be structured. This leads to some conjectures that still need to be proved. We think that we have found well over 90% of all 20-digit Perrin pseudoprimes. Overall, we have been able to calculate over 9 million Perrin pseudoprimes with our method, including some very large ones. The largest number found has 1436 digits. This seems to be a breakthrough, compared to the previously known just over 100,000 Perrin pseudoprimes, of which the largest have 20 digits. In addition, we propose two sequences that do not provide any pseudoprimes up to 1,000,000,000 at all.
  • Item
    A mathematical framework for general classical systems and time irreversibility as its consequence
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Stephan, Holger
    It is well known that important models in statistical physics like the Fokker-Planck equation satisfy an H-theorem, i.e., have a decreasing Lyapunov function (or increasing entropy). This illustrates a symmetry break in time and reflects the second law of thermodynamics. In this paper, we show that any physically reasonable classical system has to have this property. For this purpose, we develop an abstract mathematical framework based on the theory of compact topological spaces and convex analysis. Precisely, we show: 1) Any statistical state space can be described as the convex hull of the image of the canonical embedding of the bidual space of its deterministic state space (a compact topological Hausdorff space). 2) The change of any statistical state is effected by the adjoint of a Markov operator acting in the space of observables. 3) Any Markov operator satisfies a wide class of inequalities, generated by arbitrary convex functions. As a corollary, these inequalities imply a time monotone behavior of the solution of the corresponding evolution equations. Moreover, due to the general abstract setting, the proof of the underlying inequalities is very simple and therefore illustrates, where time symmetry breaks: A model is time reversible for any states if and only if the corresponding Markov operator is a deterministic one with dense range. In addition, the proposed framework provides information about the structure of microscopic evolution equations, the choice of the best function spaces for their analysis and the derivation of macroscopic evolution equations.