Search Results

Now showing 1 - 3 of 3
  • Item
    Nonlocal minimal surfaces: Interior regularity, quantitative estimates and boundary stickiness
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Dipierro, Serena; Valdinoci, Enrico
    We consider surfaces which minimize a nonlocal perimeter functional and we discuss their interior regularity and rigidity properties, in a quantitative and qualitative way, and their (perhaps rather surprising) boundary behavior. We present at least a sketch of the proofs of these results, in a way that aims to be as elementary and self contained as possible, referring to the papers [CRS10, SV13, CV13, BFV14,FV,DSV15,CSV16] for full details.
  • Item
    Graph properties for nonlocal minimal surfaces
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Dipierro, Serena; Savin, Ovidiu; Valdinoci, Enrico
    In this paper we show that a nonlocal minimal surface which is a graph outside a cylinder is in fact a graph in the whole of the space. As a consequence, in dimension 3, we show that the graph is smooth. The proofs rely on convolution techniques and appropriate integral estimates which show the pointwise validity of an Euler-Lagrange equation related to the nonlocal mean curvature.
  • Item
    Boundary behavior of nonlocal minimal surfaces
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Dipierro, Verena; Savin, Ovidiu; Valdinoci, Enrico
    We consider the behavior of the nonlocal minimal surfaces in the vicinity of the boundary. By a series of detailed examples, we show that nonlocal minimal surfaces may stick at the boundary of the domain, even when the domain is smooth and convex. This is a purely nonlocal phenomenon, and it is in sharp contrast with the boundary properties of the classical minimal surfaces. In particular, we show stickiness phenomena to half-balls when the datum outside the ball is a small half-ring and to the side of a two-dimensional box when the oscillation between the datum on the right and on the left is large enough. When the fractional parameter is small, the sticking effects may become more and more evident. Moreover, we show that lines in the plane are unstable at the boundary: namely, small compactly supported perturbations of lines cause the minimizers in a slab to stick at the boundary, by a quantity that is proportional to a power of the perturbation. In all the examples, we present concrete estimates on the stickiness phenomena. Also, we construct a family of compactly supported barriers which can have independent interest.