Search Results

Now showing 1 - 4 of 4
  • Item
    Low temperature isolation of a dinuclear silver complex of the cyclotetraphosphane [ClP(μ-PMes*)]2
    (London : Soc., 2015) Bresien, Jonas; Schulz, Axel; Villinger, Alexander
    The reaction of the cyclotetraphosphane [ClP(μ-PMes*)]2 (1, Mes* = 2,4,6-tri-tert-butylphenyl) with Ag[Al(ORF)4] (RF = CH(CF3)2) resulted in a labile, dinuclear silver complex of 1, which eliminates AgCl above −30 °C. Its properties were investigated by spectroscopic methods, single crystal X-ray diffraction and DFT calculations.
  • Item
    Correction: Increasing steric demand through flexible bulk – primary phosphanes with 2,6-bis(benzhydryl)phenyl backbones
    (London : Soc., 2019) Bresien, Jonas; Goicoechea, Jose M.; Hinz, Alexander; Scharnhölz, Moritz T.; Schulz, Axel; Suhrbier, Tim; Villinger, Alexander
    Correction for 'Increasing steric demand through flexible bulk-primary phosphanes with 2,6-bis(benzhydryl)phenyl backbones' by Jonas Bresien et al., Dalton Trans., 2019, 48, 3786-3794. © 2019 The Royal Society of Chemistry.
  • Item
    Synthetic strategies to bicyclic tetraphosphanes using P1, P2 and P4 building blocks
    (London : Soc., 2015) Bresien, Jonas; Faust, Kirill; Hering-Junghans, Christian; Rothe, Julia; Schulz, Axel; Villinger, Alexander
    Different reactions of Mes* substituted phosphanes (Mes* = 2,4,6-tri-tert-butylphenyl) led to the formation of the bicyclic tetraphosphane Mes*P4Mes* (5) and its unknown Lewis acid adduct 5·GaCl3. In this context, the endo–exo isomer of 5 was fully characterized for the first time. The synthesis was achieved by reactions involving “self-assembly” of the P4 scaffold from P1 building blocks (i.e. primary phosphanes) or by reactions starting from P2 or P4 scaffolds (i.e. a diphosphene or cyclic tetraphosphane). Furthermore, interconversion between the exo–exo and endo–exo isomer were studied by 31P NMR spectroscopy. All compounds were fully characterized by experimental as well as computational methods.
  • Item
    Reduction of dichloro(diaza-phospha)stibanes – isolation of a donor-stabilized distibenium dication
    (London : Soc., 2016) Hinz, Alexander; Rothe, Julia; Schulz, Axel; Villinger, Alexander
    A reaction of antimonytrichloride SbCl3 with potassium bis(terphenylimino)phosphide K[(TerN)2P] smoothly afforded a novel class of mixed diazadipnictanes, namely dichloro(diaza-phospha)stibane [Ter2N2P(III)Sb(III)Cl2], which is considered to exist as open chain-like and cyclic isomers in an equilibrium. [Ter2N2PSbCl2] is a versatile starting material for reduction and halide abstraction experiments. Halide abstraction led to the formation of a cyclic diazastibaphosphenium cation [P(μ-NTer)2SbCl]+. Upon reduction of [Ter2N2PSbCl2], the transient existence of the novel mixed biradicaloid [P(μ-NTer)2Sb] was proven by a trapping experiment with an alkyne, while reduction in the absence of trapping agents afforded the eight-membered heterocycle [Sb2-{μ-(TerN)2P}2]. This constitutional isomer of a dimerized biradicaloid features a bonding situation that indicates the presence of a donor-stabilized [Sb2]2+ ion.