Search Results

Now showing 1 - 6 of 6
  • Item
    Laser-induced backside wet etching of transparent materials with organic and metallic absorbers
    (Newark, NJ [u.a.] : Gordon and Breach Publ. Group, 2008) Zimmer, K.; Böhme, R.
    Laser-induced backside wet etching (LIBWE) allows the high-quality etching of transparent materials for micro- and nanopatterning. Recent own results of LIBWE with hydrocarbon and metallic absorbers (H- and M-LIBWE) are summarized and compared with selected results of other groups regarding the etching process and the etched surface. Significant results on the impact of the liquid absorber, the material and the wavelength, and the pulse length of the laser to the etching are selected for this comparison. The etching of submicron-sized periodic structures in sapphire and fused silica with interference techniques and the selection of the preferred method in dependence on the material and the processing goal discussed. The experimental results are discussed on a thermal model considering both interface and volume absorption of the laser beam. These results have the conclusion that the etching at M-LIBWE is mainly due to material melting and evaporation whereas at H-LIBWE, a modified near-surface region with a very high absorption is ablated.
  • Item
    Laser-Induced front Side Etching: An Easy and Fast Method for Sub-μm Structuring of Dielectrics
    (Amsterdam [u.a.] : Elsevier, 2012) Lorenz, P.; Ehrhardt, M.; Zimmer, K.
    Laser-induced front side etching (LIFE) is a method for the nanometer-precision structuring of dielectrics, e.g. fused silica, using thin metallic as well as organic absorber layer attached to the laser-irradiated front side of the sample. As laser source an excimer laser with a wavelength of 248 nm and an pulse duration of 25 ns was used. For sub-μm patterning a phase mask illuminated by the top hat laser beam was projected by a Schwarzschild objective. The LIFE process allows the fabrication of well-defined and smooth surface structures with sub-μm lateral etching regions (Δx < 350 nm) and vertical etching depths from 1 nm to sub-mm.
  • Item
    Laser structuring of thin layers for flexible electronics by a shock wave-induced delamination process
    (Amsterdam [u.a.] : Elsevier, 2014) Lorenz, P.; Ehrhardt, M.; Zimmer, K.
    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.
  • Item
    Pattern transfer of sub-micrometre-scaled structures into solid copper by laser embossing
    (Amsterdam [u.a.] : Elsevier, 2014) Ehrhardt, M.; Lorenz, P.; Lotnyk, A.; Romanus, H.; Thelander, E.; Zimmer, K.
    Laser embossing allows the micron and submicron patterning of metal substrates that is of great interest in a wide range of applications. This replication process enables low-cost patterning of metallic materials by non-thermal, high-speed forming which is driven by laser-induced shock waves. In this study the surface topography characteristics as well as the material structure at laser embossing of sub-micrometre gratings into solid copper is presented. The topography of the laser-embossed copper pattern is analysed with atomic force microscopy (AFM) in comparison to the master surface. The height of the embossed structures and the replicated pattern fidelity increases up to a laser fluence of F ∼ 10 J/cm2. For higher laser fluences the height of the embossed structures saturates at 75% of the master pattern height and the shape is adequate to the master. Structural modifications in the copper mono crystals after the laser embossing process were investigated with transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD). Almost no modifications were detected. The residual stress after laser embossing of 32 MPa (F = 30 J/cm2) has only a limited influence on the surface pattern formation.
  • Item
    In-process evaluation of electrical properties of CIGS solar cells scribed with laser pulses of different pulse lengths
    (Amsterdam [u.a.] : Elsevier, 2014) Zimmer, K.; Wang, X.; Lorenz, P.; Bayer, L.; Ehrhardt, M.; Scheit, C.; Braun, A.
    The optimization of laser scribing for the interconnection of CIGS solar cells is a current focus of laser process development. In addition to the geometry of the laser scribes the impact of the laser patterning to the electrical properties of the solar cells has to be optimized with regards to the scribing process and the laser sources. In-process measurements provide an approach for reliable evaluation of the electrical characteristics. In particular, the parallel resistance Rp that was calculated from the measured I-V curves was measured in dependence on the scribing parameters of a short-pulsed ns laser in comparison to a standard ps laser at a wavelength of 1.06 μm. With low pulse overlap of ∼ 20% a reduction of Rp to 2/3 of the initial value has been achieved for ns laser pulses. In comparison to ps laser slightly more defects were observed at the investigated parameter range.
  • Item
    Laser Embossing of Micro-and Submicrometer Surface Structures in Copper
    (Amsterdam [u.a.] : Elsevier, 2012) Ehrhardt, M.; Lorenz, P.; Frost, F.; Zimmer, K.
    Micro- and submicrometer structures have been transferred from nickel foils into solid copper surfaces by laser microembossing. The developed arrangement for laser microembossing allows a large-area replication using multi- pulse laser scanning scheme, guaranties a low contamination of the embossed surface and enables the utilization of thick workpieces. In the micrometer range the replicated patterns feature a high accuracy regarding the shape. A significant difference between the master and the replication pattern could be observed for the laser embossing of submicrometer patterns. In conclusion, the results show that the proposed laser embossing process is a promising method with a number of applications in microengineering.