Search Results

Now showing 1 - 10 of 59
  • Item
    Gas-Phase Fluorination on PLA Improves Cell Adhesion and Spreading
    (Washington, DC : Soc., 2020) Schroepfer, Michaela; Junghans, Frauke; Voigt, Diana; Meyer, Michael; Breier, Anette; Schulze-Tanzil, Gundula; Prade, Ina
    For the regeneration or creation of functional tissues, biodegradable biomaterials including polylactic acid (PLA) are widely preferred. Modifications of the material surface are quite common to improve cell-material interactions and thereby support the biological outcome. Typical approaches include a wet chemical treatment with mostly hazardous substances or a functionalization with plasma. In the present study, gas-phase fluorination was applied to functionalize the PLA surfaces in a simple and one-step process. The biological response including biocompatibility, cell adhesion, cell spreading, and proliferation was analyzed in cell culture experiments with fibroblasts L929 and correlated with changes in the surface properties. Surface characterization methods including surface energy and isoelectric point measurements, X-ray photoelectron spectroscopy, and atomic force microscopy were applied to identify the effects of fluorination on PLA. Gas-phase fluorination causes the formation of C-F bonds in the PLA backbone, which induce a shift to a more hydrophilic and polar surface. The slightly negatively charged surface dramatically improves cell adhesion and spreading of cells on the PLA even with low fluorine content. The results indicate that this improved biological response is protein-but not integrin-dependent. Gas-phase fluorination is therefore an efficient technique to improve cellular response to biomaterial surfaces without losing cytocompatibility. Copyright © 2020 American Chemical Society.
  • Item
    Electron Transport across Vertical Silicon/MoS2/Graphene Heterostructures: Towards Efficient Emitter Diodes for Graphene Base Hot Electron Transistors
    (Washington, DC : ACS Publications, 2020) Belete, Melkamu; Engström, Olof; Vaziri, Sam; Lippert, Gunther; Lukosius, Mindaugas; Kataria, Satender; Lemme, Max C.
    Heterostructures comprising silicon, molybdenum disulfide (MoS2), and graphene are investigated with respect to the vertical current conduction mechanism. The measured current-voltage (I-V) characteristics exhibit temperature-dependent asymmetric current, indicating thermally activated charge carrier transport. The data are compared and fitted to a current transport model that confirms thermionic emission as the responsible transport mechanism across devices. Theoretical calculations in combination with the experimental data suggest that the heterojunction barrier from Si to MoS2 is linearly temperature-dependent for T = 200-300 K with a positive temperature coefficient. The temperature dependence may be attributed to a change in band gap difference between Si and MoS2, strain at the Si/MoS2 interface, or different electron effective masses in Si and MoS2, leading to a possible entropy change stemming from variation in density of states as electrons move from Si to MoS2. The low barrier formed between Si and MoS2 and the resultant thermionic emission demonstrated here make the present devices potential candidates as the emitter diode of graphene base hot electron transistors for future high-speed electronics. Copyright © 2020 American Chemical Society.
  • Item
    Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals
    (Melville, NY : AIP Publ., 2019) Galazka, Zbigniew; Ganschow, Steffen; Schewski, Robert; Irmscher, Klaus; Klimm, Detlef; Kwasniewski, Albert; Pietsch, Mike; Fiedler, Andreas; Schulze-Jonack, Isabelle; Albrecht, Martin; Schröder, Thomas; Bickermann, Matthias
    Truly bulk ZnGa2O4 single crystals were obtained directly from the melt. High melting point of 1900 ± 20 °C and highly incongruent evaporation of the Zn- and Ga-containing species impose restrictions on growth conditions. The obtained crystals are characterized by a stoichiometric or near-stoichiometric composition with a normal spinel structure at room temperature and by a narrow full width at half maximum of the rocking curve of the 400 peak of (100)-oriented samples of 23 arcsec. ZnGa2O4 is a single crystalline spinel phase with the Ga/Zn atomic ratio up to about 2.17. Melt-grown ZnGa2O4 single crystals are thermally stable up to 1100 and 700 °C when subjected to annealing for 10 h in oxidizing and reducing atmospheres, respectively. The obtained ZnGa2O4 single crystals were either electrical insulators or n-type semiconductors/degenerate semiconductors depending on growth conditions and starting material composition. The as-grown semiconducting crystals had the resistivity, free electron concentration, and maximum Hall mobility of 0.002–0.1 Ωcm, 3 × 1018–9 × 1019 cm−3, and 107 cm2 V−1 s−1, respectively. The semiconducting crystals could be switched into the electrically insulating state by annealing in the presence of oxygen at temperatures ≥700 °C for at least several hours. The optical absorption edge is steep and originates at 275 nm, followed by full transparency in the visible and near infrared spectral regions. The optical bandgap gathered from the absorption coefficient is direct with a value of about 4.6 eV, close to that of β-Ga2O3. Additionally, with a lattice constant of a = 8.3336 Å, ZnGa2O4 may serve as a good lattice-matched substrate for magnetic Fe-based spinel films.
  • Item
    Multilevel HfO2-based RRAM devices for low-power neuromorphic networks
    (Melville, NY : AIP Publ., 2019) Milo, V.; Zambelli, C.; Olivo, P.
    Training and recognition with neural networks generally require high throughput, high energy efficiency, and scalable circuits to enable artificial intelligence tasks to be operated at the edge, i.e., in battery-powered portable devices and other limited-energy environments. In this scenario, scalable resistive memories have been proposed as artificial synapses thanks to their scalability, reconfigurability, and high-energy efficiency, and thanks to the ability to perform analog computation by physical laws in hardware. In this work, we study the material, device, and architecture aspects of resistive switching memory (RRAM) devices for implementing a 2-layer neural network for pattern recognition. First, various RRAM processes are screened in view of the device window, analog storage, and reliability. Then, synaptic weights are stored with 5-level precision in a 4 kbit array of RRAM devices to classify the Modified National Institute of Standards and Technology (MNIST) dataset. Finally, classification performance of a 2-layer neural network is tested before and after an annealing experiment by using experimental values of conductance stored into the array, and a simulation-based analysis of inference accuracy for arrays of increasing size is presented. Our work supports material-based development of RRAM synapses for novel neural networks with high accuracy and low-power consumption. © 2019 Author(s).
  • Item
    Wet-Spinning of Biocompatible Core–Shell Polyelectrolyte Complex Fibers for Tissue Engineering
    (Weinheim : Wiley-VCH, 2020) Cui, Qing; Bell, Daniel Josef; Rauer, Sebastian Bernhard; Wessling, Matthias
    Polyelectrolyte complex fibers (PEC fibers) have great potential with regard to biomedical applications as they can be fabricated from biocompatible and water-soluble polyelectrolytes under mild process conditions. The present publication describes a novel method for the continuous fabrication of PEC fibers in a water-based wet-spinning process by interfacial complexation within a core–shell spinneret. This process combines the robustness and flexibility of nonsolvent-induced phase separation (NIPS) spinning processes conventionally used in the membrane industry with the complexation between oppositely charged polyelectrolytes. The produced fibers demonstrate a core–shell structure with a low-density core and a highly porous polyelectrolyte complex shell of ≈800 μm diameter. In the case of chitosan and polystyrene sulfonate (PSS), mechanical fiber properties could be enhanced by doping the PSS with poly(ethylene oxide) (PEO). The resulting CHI/PSS-PEO fibers present a Young modulus of 3.78 GPa and a tensile strength of 165 MPa, which is an excellent combination of elongation at break and break stress compared to literature. The suitability of the CHI/PSS-PEO fibers as a scaffold for cell culture applications is verified by a four-day cultivation of human HeLa cells on PEO-reinforced fibers with a subsequent analysis of cell viability by fluorescence-based live/dead assay. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Highly Symmetric and Extremely Compact Multiple Winding Microtubes by a Dry Rolling Mechanism
    (Weinheim : Wiley-VCH, 2020) Moradi, Somayeh; Naz, Ehsan Saei Ghareh; Li, Guodong; Bandari, Nooshin; Bandari, Vineeth Kumar; Zhu, Feng; Wendrock, Horst; Schmidt, Oliver G.
    Rolled-up nanotechnology has received significant attention to self-assemble planar nanomembranes into 3D micro and nanotubular architectures. These tubular structures have been well recognized as novel building blocks in a variety of applications ranging from microelectronics and nanophotonics to microbatteries and microrobotics. However, fabrication of multiwinding microtubes with precise control over the winding interfaces, which is crucial for many complex applications, is not easy to achieve by existing materials and technologies. Here, a dry rolling approach is introduced to tackle this challenge and create tight windings in compact and highly symmetric cylindrical microstructures. This technique exploits hydrophobicity of fluorocarbon polymers and the thermal expansion mismatch of polymers and inorganic films upon thermal treatment. Quality parameters for rolled-up microtubes, against which different fabrication technologies can be benchmarked are defined. The technique offers to fabricate long freestanding multiwinding microtubes as well as hierarchical architectures incorporating rolled-up wrinkled nanomembranes. This work presents an important step forward toward the fabrication of more complex but well-controlled microtubes for advanced high-quality device architectures. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Turning a Killing Mechanism into an Adhesion and Antifouling Advantage
    (Weinheim : Wiley-VCH, 2019) Dedisch, Sarah; Obstals, Fabian; los Santos Pereira, Andres; Bruns, Michael; Jakob, Felix; Schwaneberg, Ulrich; Rodriguez‐Emmenegger, Cesar
    Mild and universal methods to introduce functionality in polymeric surfaces remain a challenge. Herein, a bacterial killing mechanism based on amphiphilic antimicrobial peptides is turned into an adhesion advantage. Surface activity (surfactant) of the antimicrobial liquid chromatography peak I (LCI) peptide is exploited to achieve irreversible binding of a protein–polymer hybrid to surfaces via physical interactions. The protein–polymer hybrid consists of two blocks, a surface-affine block (LCI) and a functional block to prevent protein fouling on surfaces by grafting antifouling polymers via single electron transfer-living radical polymerization (SET-LRP). The mild conditions of SET-LRP of N-2-hydroxy propyl methacrylamide (HPMA) and carboxybetaine methacrylamide (CBMAA) preserve the secondary structure of the fusion protein. Adsorption kinetics and grafting densities are assessed using surface plasmon resonance and ellipsometry on model gold surfaces, while the functionalization of a range of artificial and natural surfaces, including teeth, is directly observed by confocal microscopy. Notably, the fusion protein modified with poly(HPMA) completely prevents the fouling from human blood plasma and thereby exhibits a resistance to protein fouling that is comparable to the best grafted-from polymer brushes. This, combined with their simple application on a large variety of materials, highlights the universal and scalable character of the antifouling concept. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    The Electronic Conductivity of Single Crystalline Ga-Stabilized Cubic Li7La3Zr2O12: A Technologically Relevant Parameter for All-Solid-State Batteries
    (Weinheim : Wiley-VCH, 2020) Philipp, Martin; Gadermaier, Bernhard; Posch, Patrick; Hanzu, Ilie; Ganschow, Steffen; Meven, Martin; Rettenwander, Daniel; Redhammer, Günther J.; Wilkening, H. Martin R.
    The next-generation of all-solid-state lithium batteries need ceramic electrolytes with very high ionic conductivities. At the same time a negligible electronic conductivity σeon is required to eliminate self-discharge in such systems. A non-negligible electronic conductivity may also promote the unintentional formation of Li dendrites, being currently one of the key issues hindering the development of long-lasting all-solid-state batteries. This interplay is suggested recently for garnet-type Li7La3Zr2O12 (LLZO). It is, however, well known that the overall macroscopic electronic conductivity may be governed by a range of extrinsic factors such as impurities, chemical inhomogeneities, grain boundaries, morphology, and size effects. Here, advantage of Czochralski-grown single crystals, which offer the unique opportunity to evaluate intrinsic properties of a chemically homogeneous matrix, is taken to measure the electronic conductivity σeon. Via long-time, high-precision potentiostatic polarization experiments an upper limit of σeon in the order of 5 × 10−10 S cm−1 (293 K) is estimated. This value is by six orders of magnitude lower than the corresponding total conductivity σtotal = 10−3 S cm−1 of Ga-LLZO. Thus, it is concluded that the high values of σeon recently reported for similar systems do not necessarily mirror intragrain bulk properties of chemically homogenous systems but may originate from chemically inhomogeneous interfacial areas. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Tuning of Smart Multifunctional Polymer Coatings Made by Zwitterionic Phosphorylcholines
    (Weinheim : Wiley-VCH, 2020) Münch, Alexander S.; Adam, Stefan; Fritzsche, Tina; Uhlmann, Petra
    In the last years, the generation of multifunctional coatings has been moved into the focus of interface modifications to expand the spectrum of material applications and to introduce new smart properties. Herein a promising multifunctional and universally usable coating with simultaneous antifouling, easy-to-clean, and anti-fog functionality is presented based on smart polymer films consisting of copolymers with 2-methacryloyloxyethyl phosphorylcholine (MPC), realizing the function of the film and photoreactive 4-benzophenyl methacrylate (BPO), which is responsible for stability and crosslinking. The easy-to-clean effect is demonstrated qualitatively and quantitatively by oil droplet detachment experiments. The antifouling behavior against different germs is investigated by cell adhesion experiments. Furthermore the anti-fog performance is shown by breathing on the surfaces. To study the influence of the different amounts of copolymerized BPO, the grafted films are characterized by atomic force microscopy (AFM), infrared spectroscopy (ATR-FTIR), as well as contact angle measurements. In situ spectroscopic ellipsometry is performed to investigate the swelling behavior of the thin films as a function of the time of UV-irradiation. It is found that a degree of swelling of 15 and a water contact angle of less than 12° are the key parameters necessary for the generation of multifunctional coatings. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    Advances and Trends in Chemically Doped Graphene
    (Weinheim : Wiley-VCH, 2020) Ullah, Sami; Shi, Qitao; Zhou, Junhua; Yang, Xiaoqin; Ta, Huy Q.; Hasan, Maria; Ahmad, Nasir Mahmood; Fu, Lei; Bachmatiuk, Alicja; Rümmeli, Mark H.
    Chemically doped graphene materials are fascinating because these have different desirable attributes with possible synergy. The inert and gapless nature of graphene can be changed by adding a small number of heteroatoms to substitute carbon in the lattice. The doped material may display superior catalytic activities; durable, fast, and selective sensing; improved magnetic moments; photoresponses; and activity in chemical reactions. In the current review, recent advances are covered in chemically doped graphene. First, the different types of heteroatoms, their bonding configurations, and briefly their properties are discussed. This is followed by the description of various synthesis and analytical methods essential for assessing the characteristics of heterographene with specific focus on the selected graphene materials of different dopants (particularly, single dopants, including N, B, S, P, first three halogens, Ge, and Ga, and codopants, such as N/O), and more importantly, up-to-date applications enabled by the intentional doping. Finally, outlook and perspectives section review the existing challenges, future opportunities, and possible ways to improve the graphitic materials. The goal is to update and inspire the readers to establish novel doped graphene with valuable properties and for current and futuristic applications. © 2020 The Authors. Published by Wiley-VCH GmbH