Search Results

Now showing 1 - 8 of 8
  • Item
    Ambient Hydrogenation and Deuteration of Alkenes Using a Nanostructured Ni-Core-Shell Catalyst
    (Weinheim : Wiley-VCH, 2021) Gao, Jie; Ma, Rui; Feng, Lu; Liu, Yuefeng; Jackstell, Ralf; Jagadeesh, Rajenahally V.; Beller, Matthias
    A general protocol for the selective hydrogenation and deuteration of a variety of alkenes is presented. Key to success for these reactions is the use of a specific nickel-graphitic shell-based core–shell-structured catalyst, which is conveniently prepared by impregnation and subsequent calcination of nickel nitrate on carbon at 450 °C under argon. Applying this nanostructured catalyst, both terminal and internal alkenes, which are of industrial and commercial importance, were selectively hydrogenated and deuterated at ambient conditions (room temperature, using 1 bar hydrogen or 1 bar deuterium), giving access to the corresponding alkanes and deuterium-labeled alkanes in good to excellent yields. The synthetic utility and practicability of this Ni-based hydrogenation protocol is demonstrated by gram-scale reactions as well as efficient catalyst recycling experiments. © 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH
  • Item
    Cobalt Single-Atom Catalysts with High Stability for Selective Dehydrogenation of Formic Acid
    (Weinheim : Wiley-VCH, 2020) Li, Xiang; Surkus, Annette-Enrica; Rabeah, Jabor; Anwar, Muhammad; Dastigir, Sarim; Junge, Henrik; Brückner, Angelika; Beller, Matthias
    Metal–organic framework (MOF)-derived Co-N-C catalysts with isolated single cobalt atoms have been synthesized and compared with cobalt nanoparticles for formic acid dehydrogenation. The atomically dispersed Co-N-C catalyst achieves superior activity, better acid resistance, and improved long-term stability compared with nanoparticles synthesized by a similar route. High-angle annular dark-field–scanning transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, and X-ray absorption fine structure characterizations reveal the formation of CoIINx centers as active sites. The optimal low-cost catalyst is a promising candidate for liquid H2 generation. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Four-Dimensional Deoxyribonucleic Acid–Gold Nanoparticle Assemblies
    (Weinheim : Wiley-VCH, 2020) Luo, Ming; Xuan, Mingjun; Huo, Shuaidong; Fan, Jilin; Chakraborty, Gurudas; Wang, Yixi; Zhao, Hui; Herrmann, Andreas; Zheng, Lifei
    Organization of gold nanoobjects by oligonucleotides has resulted in many three-dimensional colloidal assemblies with diverse size, shape, and complexity; nonetheless, autonomous and temporal control during formation remains challenging. In contrast, living systems temporally and spatially self-regulate formation of functional structures by internally orchestrating assembly and disassembly kinetics of dissipative biomacromolecular networks. We present a novel approach for fabricating four-dimensional gold nanostructures by adding an additional dimension: time. The dissipative character of our system is achieved using exonuclease III digestion of deoxyribonucleic acid (DNA) fuel as an energy-dissipating pathway. Temporal control over amorphous clusters composed of spherical gold nanoparticles (AuNPs) and well-defined core–satellite structures from gold nanorods (AuNRs) and AuNPs is demonstrated. Furthermore, the high specificity of DNA hybridization allowed us to demonstrate selective activation of the evolution of multiple architectures of higher complexity in a single mixture containing small and larger spherical AuNPs and AuNRs. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA
  • Item
    Mechanism of Bi−Ni Phase Formation in a Microwave-Assisted Polyol Process
    (Weinheim : Wiley-VCH, 2019) Smuda, Matthias; Damm, Christine; Ruck, Michael; Doert, Thomas
    Typically, intermetallic phases are obtained in solid-state reactions or crystallization from melts, which are highly energy and time consuming. The polyol process takes advantage of low temperatures and short reaction times using easily obtainable starting materials. The formation mechanism of these intermetallic particles has received little attention so far, even though a deeper understanding should allow for better synthesis planning. In this study, we therefore investigated the formation of BiNi particles in ethylene glycol in a microwave-assisted polyol process mechanistically. The coordination behavior in solution was analyzed using HPLC-MS and UV-Vis. Tracking the reaction with PXRD measurements, FT-IR spectroscopy and HR-TEM revealed a successive reduction of Bi3+ and Ni2+, leading to novel spherical core-shell structure in a first reaction step. Bismuth particles are encased in a matrix of nickel nanoparticles of 2 nm to 6 nm in diameter and oxidation products of ethylene glycol. Step-wise diffusion of nickel into the bismuth particle intermediately results in the bismuth-rich compound Bi3Ni, which consecutively transforms into the BiNi phase as the reaction progresses. The impacts of the anion type, temperature and pH value were also investigated. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    Influence of Nanoparticle Processing on the Thermoelectric Properties of (BixSb1−X)2Te3 Ternary Alloys
    (Weinheim : Wiley-VCH, 2021) Salloum, Sarah; Bendt, Georg; Heidelmann, Markus; Loza, Kateryna; Bayesteh, Samaneh; Izadi, M. Sepideh; Patrick, Kawulok; He, Ran; Schlörb, Heike; Perez, Nicolas; Reith, Heiko; Nielsch, Kornelius; Schierning, Gabi; Schulz, Stephan
    The synthesis of phase‐pure ternary solutions of tetradymite‐type materials (BixSb1−x)2Te3 (x=0.25; 0.50; 0.75) in an ionic liquid approach has been carried out. The nanoparticles are characterized by means of energy‐dispersive X‐ray spectroscopy (EDX), powder X‐ray diffraction (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy. In addition, the role of different processing approaches on the thermoelectric properties ‐ Seebeck coefficient as well as electrical and thermal conductivity ‐ is demonstrated.
  • Item
    A Tunable Polymer–Metal Based Anti-Reflective Metasurface
    (Weinheim : Wiley-VCH, 2020) Brasse, Yannic; Ng, Charlene; Magnozzi, Michele; Zhang, Heyou; Mulvaney, Paul; Fery, Andreas; Gómez, Daniel E.
    Anti-reflective surfaces are of great interest for optical devices, sensing, photovoltaics, and photocatalysis. However, most of the anti-reflective surfaces lack in situ tunability of the extinction with respect to wavelength. This communication demonstrates a tunable anti-reflective surface based on colloidal particles comprising a metal core with an electrochromic polymer shell. Random deposition of these particles on a reflective surface results in a decrease in the reflectance of up to 99.8% at the localized surface plasmon resonance frequency. This narrow band feature can be tuned by varying the pH or by application of an electric potential, resulting in wavelength shifts of up to 30 nm. Electrophoretic particle deposition is shown to be an efficient method for controlling the interparticle distance and thereby further optimizing the overall efficiency of the anti-reflective metasurface. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  • Item
    Selective Hydrogenation and Hydrodeoxygenation of Aromatic Ketones to Cyclohexane Derivatives Using a Rh@SILP Catalyst
    (Weinheim : Wiley-VCH, 2020) Moos, Gilles; Emondts, Meike; Bordet, Alexis; Leitner, Walter
    Rhodium nanoparticles immobilized on an acid-free triphenylphosphonium-based supported ionic liquid phase (Rh@SILP(Ph3-P-NTf2)) enabled the selective hydrogenation and hydrodeoxygenation of aromatic ketones. The flexible molecular approach used to assemble the individual catalyst components (SiO2, ionic liquid, nanoparticles) led to outstanding catalytic properties. In particular, intimate contact between the nanoparticles and the phosphonium ionic liquid is required for the deoxygenation reactivity. The Rh@SILP(Ph3-P-NTf2) catalyst was active for the hydrodeoxygenation of benzylic ketones under mild conditions, and the product distribution for non-benzylic ketones was controlled with high selectivity between the hydrogenated (alcohol) and hydrodeoxygenated (alkane) products by adjusting the reaction temperature. The versatile Rh@SILP(Ph3-P-NTf2) catalyst opens the way to the production of a wide range of high-value cyclohexane derivatives by the hydrogenation and/or hydrodeoxygenation of Friedel–Crafts acylation products and lignin-derived aromatic ketones. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Water-Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasi-Homogeneous Photocatalysis
    (Weinheim : Wiley-VCH, 2019) Krivtsov, Igor; Mitoraj, Dariusz; Adler, Christiane; Ilkaeva, Marina; Sardo, Mariana; Mafra, Luis; Neumann, Christof; Turchanin, Andrey; Li, Chunyu; Dietzek, Benjamin; Leiter, Robert; Biskupek, Johannes; Kaiser, Ute; Im, Changbin; Kirchhoff, Björn; Jacob, Timo; Beranek, Radim
    Heptazine-based polymeric carbon nitrides (PCN) are promising photocatalysts for light-driven redox transformations. However, their activity is hampered by low surface area resulting in low concentration of accessible active sites. Herein, we report a bottom-up preparation of PCN nanoparticles with a narrow size distribution (ca. 10±3 nm), which are fully soluble in water showing no gelation or precipitation over several months. They allow photocatalysis to be carried out under quasi-homogeneous conditions. The superior performance of water-soluble PCN, compared to conventional solid PCN, is shown in photocatalytic H2O2 production via reduction of oxygen accompanied by highly selective photooxidation of 4-methoxybenzyl alcohol and benzyl alcohol or lignocellulose-derived feedstock (ethanol, glycerol, glucose). The dissolved photocatalyst can be easily recovered and re-dissolved by simple modulation of the ionic strength of the medium, without any loss of activity and selectivity. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.