Search Results

Now showing 1 - 10 of 70
  • Item
    Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates
    (London : Nature Publishing Group, 2016) Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; Van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens
    The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.
  • Item
    Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene
    (London : Nature Publishing Group, 2016) Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz
    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication.
  • Item
    Berry phase and band structure analysis of the Weyl semimetal NbP
    (London : Nature Publishing Group, 2016) Sergelius, Philip; Gooth, Johannes; Bäßler, Svenja; Zierold, Robert; Wiegand, Christoph; Niemann, Anna; Reith, Heiko; Shekhar, Chandra; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius
    Weyl semimetals are often considered the 3D-analogon of graphene or topological insulators. The evaluation of quantum oscillations in these systems remains challenging because there are often multiple conduction bands. We observe de Haas-van Alphen oscillations with several frequencies in a single crystal of the Weyl semimetal niobium phosphide. For each fundamental crystal axis, we can fit the raw data to a superposition of sinusoidal functions, which enables us to calculate the characteristic parameters of all individual bulk conduction bands using Fourier transform with an analysis of the temperature and magnetic field-dependent oscillation amplitude decay. Our experimental results indicate that the band structure consists of Dirac bands with low cyclotron mass, a non-trivial Berry phase and parabolic bands with a higher effective mass and trivial Berry phase.
  • Item
    The vicinity of hyper-honeycomb β-Li2IrO3 to a three-dimensional Kitaev spin liquid state
    (London : Nature Publishing Group, 2016) Katukuri, Vamshi M.; Yadav, Ravi; Hozoi, Liviu; Nishimoto, Satoshi; van den Brink, Jeroen
    Due to the combination of a substantial spin-orbit coupling and correlation effects, iridium oxides hold a prominent place in the search for novel quantum states of matter, including, e.g., Kitaev spin liquids and topological Weyl states. We establish the promise of the very recently synthesized hyper-honeycomb iridate β-Li2IrO3 in this regard. A detailed theoretical analysis reveals the presence of large ferromagnetic first-neighbor Kitaev interactions, while a second-neighbor antiferromagnetic Heisenberg exchange drives the ground state from ferro to zigzag order via a three-dimensional Kitaev spin liquid and an incommensurate phase. Experiment puts the system in the latter regime but the Kitaev spin liquid is very close and reachable by a slight modification of the ratio between the second- and first-neighbor couplings, for instance via strain.
  • Item
    An electron beam profile instrument based on FBGs
    (Basel : MDPI AG, 2014) Sporea, D.; Stǎncǎlie, A.; Becherescu, N.; Becker, M.; Rothhardt, M.
    Along with the dose rate and the total irradiation dose measurements, the knowledge of the beam localization and the beam profile/energy distribution in the beam are parameters of interest for charged particle accelerator installations when they are used in scientific investigations, industrial applications or medical treatments. The transverse profile of the beam, its position, its centroid location, and its focus or flatness depend on the instrument operating conditions or on the beam exit setup. Proof-of-concept of a new type of charged particle beam diagnostics based on fiber Bragg gratings (FBGs) was demonstrated. Its operating principle relies on the measurement of the peak wavelength changes for an array of FBG sensors as function of the temperature following the exposure to an electron beam. Periodically, the sensor irradiation is stopped and the FBG are force cooled to a reference temperature with which the temperature influencing each sensor during beam exposure is compared. Commercially available FBGs, and FBGs written in radiation resistant optical fibers, were tested under electron beam irradiation in order to study their possible use in this application.
  • Item
    Coupled multiple-mode theory for s± pairing mechanism in iron based superconductors
    (London : Nature Publishing Group, 2016) Kiselev, M.N.; Efremov, D.V.; Drechsler, S.L.; van den Brink, Jeroen; Kikoin, K.
    We investigate the interplay between the magnetic and the superconducting degrees of freedom in unconventional multi-band superconductors such as iron pnictides. For this purpose a dynamical mode-mode coupling theory is developed based on the coupled Bethe-Salpeter equations. In order to investigate the region of the phase diagram not too far from the tetracritical point where the magnetic spin density wave, (SDW) and superconducting (SC) transition temperatures coincide, we also construct a Ginzburg-Landau functional including both SC and SDW fluctuations in a critical region above the transition temperatures. The fluctuation corrections tend to suppress the magnetic transition, but in the superconducting channel the intraband and interband contribution of the fluctuations nearly compensate each other.
  • Item
    Quasi one dimensional dirac electrons on the surface of Ru2 Sn3
    (London : Nature Publishing Group, 2014) Gibson, Q.D.; Evtushinsky, D.; Yaresko, A.N.; Zabolotnyy, V.B.; Ali, Mazhar N.; Fuccillo, M.K.; Van den Brink, J.; Büchner, B.; Cava, R.J.; Borisenko, S.V.
    We present an ARPES study of the surface states of Ru2Sn3, a new type of a strong 3D topological insulator (TI). In contrast to currently known 3D TIs, which display two-dimensional Dirac cones with linear isotropic dispersions crossing through one point in the surface Brillouin Zone (SBZ), the surface states on Ru2Sn3 are highly anisotropic, displaying an almost flat dispersion along certain high-symmetry directions. This results in quasi-one dimensional (1D) Dirac electronic states throughout the SBZ that we argue are inherited from features in the bulk electronic structure of Ru2Sn3 where the bulk conduction bands are highly anisotropic. Unlike previous experimentally characterized TIs, the topological surface states of Ru2Sn3 are the result of a d-p band inversion rather than an s-p band inversion. The observed surface states are the topological equivalent to a single 2D Dirac cone at the surface Brillouin zone.
  • Item
    Wavelength-versatile graphene-gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers
    (London : Nature Publishing Group, 2014) Ma, J.; Xie, G.; Lv, P.; Gao, W.; Yuan, P.; Qian, L.; Griebner, U.; Petrov, V.; Yu, H.; Zhang, H.; Wang, J.
    An ultra-broadband graphene-gold film saturable absorber mirror (GG-SAM) with a spectral coverage exceeding 1300 nm is experimentally demonstrated for mode-locking of bulk solid-state lasers. Owing to the p-type doping effect caused by graphene-gold film interaction, the graphene on gold-film substrate shows a remarkably lower light absorption relative to pristine graphene, which is very helpful to achieve continuous-wave mode-locking in low-gain bulk lasers. Using the GG-SAM sample, stable mode-locking is realized in a Yb:YCOB bulk laser near 1 μm, a Tm:CLNGG bulk laser near 2 μm and a Cr:ZnSe bulk laser near 2.4 μm. The saturable absorption is characterised at an intermediate wavelength of 1.56 μm by pump-probe measurements. The as-fabricated GG-SAM with ultra-broad bandwidth, ultrafast recovery time, low absorption, and low cost has great potential as a universal saturable absorber mirror for mode-locking of various bulk lasers with unprecedented spectral coverage.
  • Item
    High field superconducting properties of Ba(Fe1-xCox)2As2 thin films
    (London : Nature Publishing Group, 2015) Hänisch, Jens; Iida, Kazumasa; Kurth, Fritz; Reich, Elke; Tarantini, Chiara; Jaroszynski, Jan; Förster, Tobias; Fuchs, Günther; Hühne, Ruben; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard
    The film investigated grew phase-pure and highly textured with in-plane and out-of-plane full width at half maximum, FWHM, of = 0.74° and = 0.9°, Suppl. S1. The sample, however, does contain a large density of ab-planar defects, as revealed by transition electron microscope (TEM) images of focused ion beam (FIB) cuts near the microbridges, Fig. 1. These defects are presumably stacking faults (i.e. missing FeAs layers)20. The reason for this defect formation (also observed on technical substrates)21 is not fully understood. Possible reasons are a partial As loss during deposition22, and relaxation processes in combination with the Fe buffer layer23. Estimating the distance between these intergrowths leads to values varying between 5 and 10 nm. Between the planar defects, an orientation contrast is visible in TEM (inset Fig. 1b), i.e. the brighter crystallites are slightly rotated either around (010) (out-of-plane spread, ) or around (001) (in-plane spread, ) and enclosed by dislocation networks or small-angle GBs. Since the crystallites are sandwiched between planar defects, an in-plane misorientation is most likely. The out-of-plane misorientation, on the other hand, is visible as a slight tilt of the ab-planar defects with respect to each other, especially in the upper part of the sample. No globular or columnar precipitates were found.
  • Item
    Mechanochemical route to the synthesis of nanostructured Aluminium nitride
    (London : Nature Publishing Group, 2016) Rounaghi, S.A.; Eshghi, H.; Scudino, S.; Vyalikh, A.; Vanpoucke, D.E.P.; Gruner, W.; Oswald, S.; Rashid, A.R. Kiani; Khoshkhoo, M. Samadi; Scheler, U.; Eckert, J.
    Hexagonal Aluminium nitride (h-AlN) is an important wide-bandgap semiconductor material which is conventionally fabricated by high temperature carbothermal reduction of alumina under toxic ammonia atmosphere. Here we report a simple, low cost and potentially scalable mechanochemical procedure for the green synthesis of nanostructured h-AlN from a powder mixture of Aluminium and melamine precursors. A combination of experimental and theoretical techniques has been employed to provide comprehensive mechanistic insights on the reactivity of melamine, solid state metal-organic interactions and the structural transformation of Al to h-AlN under non-equilibrium ball milling conditions. The results reveal that melamine is adsorbed through the amine groups on the Aluminium surface due to the long-range van der Waals forces. The high energy provided by milling leads to the deammoniation of melamine at the initial stages followed by the polymerization and formation of a carbon nitride network, by the decomposition of the amine groups and, finally, by the subsequent diffusion of nitrogen into the Aluminium structure to form h-AlN.