Search Results

Now showing 1 - 5 of 5
  • Item
    Self-Regenerating Soft Biophotovoltaic Devices
    (Washington, DC : ACS Publications, 2018) Qiu, Xinkai; Castañeda Ocampo, Olga; de Vries, Hendrik W.; van Putten, Maikel; Loznik, Mark; Herrmann, Andreas; Chiechi, Ryan C.
    This paper describes the fabrication of soft, stretchable biophotovoltaic devices that generate photocurrent from photosystem I (PSI) complexes that are self-assembled onto Au electrodes with a preferred orientation. Charge is collected by the direct injection of electrons into the Au electrode and the transport of holes through a redox couple to liquid eutectic gallium-indium (EGaIn) electrodes that are confined to microfluidic pseudochannels by arrays of posts. The pseudochannels are defined in a single fabrication step that leverages the non-Newtonian rheology of EGaIn. This strategy is extended to the fabrication of reticulated electrodes that are inherently stretchable. A simple shadow evaporation technique is used to increase the surface area of the Au electrodes by a factor of approximately 106 compared to planar electrodes. The power conversion efficiency of the biophotovoltaic devices decreases over time, presumably as the PSI complexes denature and/or detach from the Au electrodes. However, by circulating a solution of active PSI complexes the devices self-regenerate by mass action/self-assembly. These devices leverage simple fabrication techniques to produce complex function and prove that photovoltaic devices comprising PSI can retain the ability to regenerate, one of the most important functions of photosynthetic organisms. © 2018 American Chemical Society.
  • Item
    Stacks of Azobenzene Stars: Self-Assembly Scenario and Stabilising Forces Quantified in Computer Modelling
    (Basel : MDPI, 2019) Savchenko, Vladyslav; Koch, Markus; Pavlov, Aleksander S.; Saphiannikova, Marina; Guskova, Olga
    In this paper, the columnar supramolecular aggregates of photosensitive star-shaped azobenzenes with benzene-1,3,5-tricarboxamide core and azobenzene arms are analyzed theoretically by applying a combination of computer simulation techniques. Without a light stimulus, the azobenzene arms adopt the trans-state and build one-dimensional columns of stacked molecules during the first stage of the noncovalent association. These columnar aggregates represent the structural elements of more complex experimentally observed morphologies-fibers, spheres, gels, and others. Here, we determine the most favorable mutual orientations of the trans-stars in the stack in terms of (i) the p - p distance between the cores lengthwise the aggregate, (ii) the lateral displacements due to slippage and (iii) the rotation promoting the helical twist and chirality of the aggregate. To this end, we calculate the binding energy diagrams using density functional theory. The model predictions are further compared with available experimental data. The intermolecular forces responsible for the stability of the stacks in crystals are quantified using Hirshfeld surface analysis. Finally, to characterize the self-assembly mechanism of the stars in solution, we calculate the hydrogen bond lengths, the normalized dipole moments and the binding energies as functions of the columnar length. For this, molecular dynamics trajectories are analyzed. Finally, we conclude about the cooperative nature of the self-assembly of star-shaped azobenzenes with benzene-1,3,5-tricarboxamide core in aqueous solution.
  • Item
    Ordered Mesoporous TiO2 Gyroids: Effects of Pore Architecture and Nb-Doping on Photocatalytic Hydrogen Evolution under UV and Visible Irradiation
    (Weinheim : Wiley-VCH, 2018) Dörr, Tobias Sebastian; Deilmann, Leonie; Haselmann, Greta; Cherevan, Alexey; Zhang, Peng; Blaha, Peter; de Oliveira, Peter William; Kraus, Tobias; Eder, Dominik
    Pure and Nb-doped TiO2 photocatalysts with highly ordered alternating gyroid architecture and well-controllable mesopore size of 15 nm via co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer are synthesized. A combined effort by electron microscopy, X-ray scattering, photoluminescence, X-ray photoelectron spectroscopy, Raman spectroscopy, and density functional theory simulations reveals that the addition of small amounts of Nb results in the substitution of Ti4+ with isolated Nb5+ species that introduces inter-bandgap states, while at high concentrations, Nb prefers to cluster forming shallow trap states within the conduction band minimum of TiO2. The gyroidal photocatalysts are remarkably active toward hydrogen evolution under UV and visible light due to the open 3D network, where large mesopores ensure efficient pore diffusion and high photon harvesting. The gyroids yield unprecedented high evolution rates beyond 1000 µmol h−1 (per 10 mg catalyst), outperforming even the benchmark P25-TiO2 more than fivefold. Under UV light, the Nb-doping reduces the activity due to the introduction of charge recombination centers, while the activity in the visible triple upon incorporation is owed to a more efficient absorption due to inter-bandgap states. This unique pore architecture may further offer hitherto undiscovered optical benefits to photocatalysis, related to chiral and metamaterial-like behavior, which will stimulate further studies focusing on novel light–matter interactions.
  • Item
    Rolled‐Up Self‐Assembly of Compact Magnetic Inductors, Transformers, and Resonators
    (Weinheim : Wiley-VCH Verlag GmbH & Co. KG, 2018-8-17) Karnaushenko, Dmitriy D.; Karnaushenko, Daniil; Grafe, Hans‐Joachim; Kataev, Vladislav; Büchner, Bernd; Schmidt, Oliver G.
    3D self-assembly of lithographically patterned ultrathin films opens a path to manufacture microelectronic architectures with functionalities and integration schemes not accessible by conventional 2D technologies. Among other microelectronic components, inductances, transformers, antennas, and resonators often rely on 3D configurations and interactions with electromagnetic fields requiring exponential fabrication efforts when downscaled to the micrometer range. Here, the controlled self-assembly of functional structures is demonstrated. By rolling up ultrathin films into cylindrically shaped microelectronic devices, electromagnetic resonators, inductive and mutually coupled coils are realized. Electrical performance of these devices is improved purely by transformation of a planar into a cylindrical geometry. This is accompanied by an overall downscaling of the device footprint area by more than 50 times. Application of compact self-assembled microstructures has significant impact on electronics, reducing size, fabrication efforts, and offering a wealth of new features in devices by 3D shaping.
  • Item
    Global weak solutions to a sixth order Cahn-Hilliard type equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Korzec, Maciek Dominik; Nayar, Piotr; Rybka, Piotr
    In this paper we study a sixth order Cahn-Hilliard type equation that arises as a model for the faceting of a growing surface. We show global in time existence of weak solutions and uniform in time a priori estimates in the H^3 norm. These bounds enable us to show the uniqueness of weak solutions.