Search Results

Now showing 1 - 2 of 2
  • Item
    Merging Top-Down and Bottom-Up Approaches to Fabricate Artificial Photonic Nanomaterials with a Deterministic Electric and Magnetic Response
    (Weinheim : Wiley-VCH Verlag, 2020) Dietrich K.; Zilk M.; Steglich M.; Siefke T.; Hübner U.; Pertsch T.; Rockstuhl C.; Tünnermann A.; Kley E.-B.
    Artificial photonic nanomaterials made from densely packed scatterers are frequently realized either by top-down or bottom-up techniques. While top-down techniques offer unprecedented control over achievable geometries for the scatterers, by trend they suffer from being limited to planar and periodic structures. In contrast, materials fabricated with bottom-up techniques do not suffer from such disadvantages but, unfortunately, they offer only little control on achievable geometries for the scatterers. To overcome these limitations, a nanofabrication strategy is introduced that merges both approaches. A large number of scatterers are fabricated with a tailored optical response by fast character projection electron-beam lithography and are embedded into a membrane. By peeling-off this membrane from the substrate, scrambling, and densifying it, a bulk material comprising densely packed and randomly arranged scatterers is obtained. The fabrication of an isotropic material from these scatterers with a strong electric and magnetic response is demonstrated. The approach of this study unlocks novel opportunities to fabricate nanomaterials with a complex optical response in the bulk but also on top of arbitrarily shaped surfaces. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Item
    A wideband cryogenic microwave low-noise amplifier
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2020) Ivanov, Boris I.; Volkhin, Dmitri I.; Novikov, Ilya L.; Pitsun, Dmitri K.; Moskalev, Dmitri O.; Rodionov, Ilya A.; Il'ichev, Evgeni; Vostretsov, Aleksey G.
    A broadband low-noise four-stage high-electron-mobility transistor amplifier was designed and characterized in a cryogen-free dilution refrigerator at the 3.8 K temperature stage. The obtained power dissipation of the amplifier is below 20 mW. In the frequency range from 6 to 12 GHz its gain exceeds 30 dB. The equivalent noise temperature of the amplifier is below 6 K for the presented frequency range. The amplifier is applicable for any type of cryogenic microwave measurements. As an example we demonstrate here the characterization of the superconducting X-mon qubit coupled to an on-chip coplanar waveguide resonator. ©2020 Ivanov et al.; licensee Beilstein-Institut.License and terms: see end of document.