Search Results

Now showing 1 - 10 of 17
  • Item
    Modulation Linearity Characterization of Si Ring Modulators
    (Washington, DC : OSA, 2021) Jo, Youngkwan; Mai, Christian; Lischke, Stefan; Zimmermann, Lars; Choi, Woo-Young
    Modulation linearity of Si ring modulators (RMs) is investigated through the numerical simulation based on the coupled-mode theory and experimental verification. Numerical values of the key parameters needed for the simulation are experimentally extracted. Simulation and measurement results agree well. With these, the influence of input optical wavelength and power on the Si RM linearity are characterized.
  • Item
    Liquid-Core Microstructured Polymer Optical Fiber as Fiber-Enhanced Raman Spectroscopy Probe for Glucose Sensing
    (Washington, DC : OSA, 2020) Azkune, Mikel; Frosch, Timea; Arrospide, Eneko; Aldabaldetreku, Gotzon; Bikandi, Iñaki; Zubia, Joseba; Popp, Jürgen; Frosch, Torsten
    This work reports the development and application of two liquid-core microstructured polymer optical fibers (LC-mPOF) with different microstructure sizes. They are used in a fiber-enhanced Raman spectroscopy sensing platform, with the aim of detecting glucose in aqueous solutions in the clinically relevant range for sodium-glucose cotransporter 2 inhibitor therapy. The sensing platform is tested for low-concentration glucose solutions using each LC-mPOF. Results confirm that a significant enhancement of the Raman signal is achieved in comparison to conventional Raman spectroscopy. Additional measurements are carried out to obtain the valid measurement range, the resolution, and the limit of detection, showing that the LC-mPOF with 66-µm-diameter central hollow core has the highest potential for future clinical applications. Finally, preliminary tests successfully demonstrate glucose identification in urine. © 1983-2012 IEEE.
  • Item
    Sub-cycle valleytronics: control of valley polarization using few-cycle linearly polarized pulses
    (Washington, DC : OSA, 2021) Jiménez-Galán, Álvaro; Silva, Rui E. F.; Smirnova, Olga; Ivanov, Misha
    So far, it has been assumed that selective excitation of a desired valley in the Brillouin zone of a hexagonal two-dimensional material has to rely on using circularly polarized fields. We theoretically demonstrate a way to control the valley excitation in hexagonal 2D materials on a few-femtosecond timescale using a few-cycle, linearly polarized pulse with controlled carrier–envelope phase. The valley polarization is mapped onto the strength of the perpendicular harmonic signal of a weak, linearly polarized pulse, which allows to read this information all-optically without destroying the valley state and without relying on the Berry curvature, making our approach potentially applicable to inversion-symmetric materials. We show applicability of this method to hexagonal boron nitride and MoS2.
  • Item
    Electron dynamics in laser-driven atoms near the continuum threshold
    (Washington, DC : OSA, 2021) Liu, Mingqing; Xu, Songpo; Hu, Shilin; Becker, Wilhelm; Quan, Wei; Liu, Xiaojun; Chen, Jing
    Strong-field ionization and Rydberg-state excitation (RSE) near the continuum threshold exhibit two phenomena that have attracted a lot of recent attention: the low-energy structure (LES) just above and frustrated tunneling ionization just below the threshold. The former becomes apparent for longer laser wavelengths, while the latter has been especially investigated in the near infrared; both have been treated as separate phenomena so far. Here we present a unified perspective based on electron trajectories, which emphasizes the very important role of the electron-ion Coulomb interaction as expected in this energy region. Namely, those trajectories that generate the LES can also be recaptured into a Rydberg state. The coherent superposition of the contributions of such trajectories with different travel times (each generating one of the various LES peaks) causes an oscillation in the intensity dependence of the RSE yield, which is especially noticeable for longer wavelengths. The theory is illustrated by RSE experiments at 1800 nm, which agree very well with the theory with respect to position and period of the oscillation. The wavelength scaling of the RSE oscillation is also discussed. Our work establishes a solid relationship between processes below and above the threshold and sheds new light on atomic dynamics driven by intense laser fields in this critical energy region.
  • Item
    Dynamically tuned arrays of polariton parametric oscillators
    (Washington, DC : OSA, 2020) Kuznetsov, Alexander S.; Dagvadorj, Galbadrakh; Biermann, Klaus; Szymanska, Marzena H.; Santos, Paulo V.
    The spatially varying strain field of the wave induces state-dependent energy shifts of discrete polariton levels with the appropriate symmetry for OPO triggering. The robustness of the dynamic acoustic tuning is demonstrated by the synchronous excitation of an array of confined OPOs using a single wave, which thus opens the way for the realization of scalable nonlinear on-chip systems. © 2020 Optical Society of America
  • Item
    Rotational quantum beat lasing without inversion
    (Washington, DC : OSA, 2020) Richter, Maria; Lytova, Marianna; Morales, Felipe; Haessler, Stefan; Smirnova, Olga; Spanner, Michael; Ivanov, Misha
    In standard lasers, light amplification requires population inversion between an upper and a lower state to break the reciprocity between absorption and stimulated emission. However, in a medium prepared in a specific superposition state, quantum interference may fully suppress absorption while leaving stimulated emission intact, opening the possibility of lasing without inversion. Here we show that lasing without inversion arises naturally during propagation of intense femtosecond laser pulses in air. It is triggered by the combination of molecular ionization and molecular alignment, both unavoidable in intense light fields. The effect could enable inversionless amplification of broadband radiation in many molecular gases, opening unusual opportunities for remote sensing. © 2020 Optical Society of America
  • Item
    In situ temporal measurement of ultrashort laser pulses at full power during high-intensity laser–matter interactions
    (Washington, DC : OSA, 2020) Crespo, Helder M.; Witting, Tobias; Canhota, Miguel; Miranda, Miguel; Tisch, John W.G
    In laser-matter interaction experiments, it is of paramount importance to characterize the laser pulse on target (in situ) and at full power. This allows pulse optimization and meaningful comparison with theory, and it can shed fundamental new light on pulse distortions occurring in or on the target.Here we introduce and demonstrate a new technique based on dispersion-scan using the concurrent third harmonic emission from the target that permits the full (amplitude and phase), in situ, in-parallel characterization of ultrashort laser pulses in a gas or solid target over a very wide intensity range encompassing the 1013-1015Wcm-2regime of high harmonic generation and other important strong-field phenomena, with possible extension to relativistic intensities presently inaccessible to other diagnostics. © 2020 OSA - The Optical Society. All rights reserved.
  • Item
    Photonic lanterns: a practical guide to filament tapering
    (Washington, DC : OSA, 2021) Davenport, John J.; Diab, Momen; Deka, Pranab J.; Tripathi, Aashana; Madhav, Kalaga; Roth, Martin M.
    We present a detailed method of tapering and drawing photonic lanterns using a filament glass processing system. Single-mode fibers (SMFs) were stacked inside a low refractive index, fluorine-doped capillary, which was then heated and tapered to produce a transition from single-mode to multi-mode. Fabrication parameters were considered in four categories: method of preparation and stacking of SMFs into a capillary, heat and filament dimensions of the glass processor, capillary ID, and the use of vacuum during tapering. 19- and 37- fiber lanterns were drawn, demonstrating good fusion between SMF claddings, a clear differentiation between core and cladding in the multimode (MM) section, and well-ordered arrangements between SMFs, which is controlled during the tapering process. The transmission efficiency of a 19-fiber photonic lantern, compared to an MMF with the same core diameter and NA, has a relative transmission efficiency of 1.19 dB or 67.1%. The steps and parameters provided in this paper form a framework for fabricating quality photonic lanterns.
  • Item
    Novel UV-transparent 2-component polyurethane resin for chip-on-board LED micro lenses
    (Washington, DC : OSA, 2020) Bauer, Joachim; Gutke, Marko; Heinrich, Friedhelm; Edling, Matthias; Stoycheva, Vesela; Kaltenbach, Alexander; Burkhardt, Martin; Gruenefeld, Martin; Gamp, Matthias; Gerhard, Christoph; Steglich, Patrick; Steffen, Sebastian; Herzog, Michael; Dreyer, Christian; Schrader, Sigurd
    In this work we present a novel optical polymer system based on polyurethane elastomer components, which combines excellent UV transparency with high thermal stability, good hardness, high surface tension and long pot life. The material looks very promising for encapsulation and microlensing applications for chip-on-board (CoB) light-emitting diodes (LED). The extinction coefficient k, refractive index n, and bandgap parameters were derived from transmission and reflection measurements in a wavelength range of 200-890 nm. Thermogravimetry and differential scanning calorimetry were used to provide glass transition and degradation temperatures. The surface tension was determined by means of contact angle measurements. As proof of concept, a commercial InGaN-CoB-LED is used to demonstrate the suitability of the new material for the production of microlenses. © 2020 Optical Society of America.
  • Item
    Polarization-resolved second-harmonic generation imaging through a multimode fiber
    (Washington, DC : OSA, 2021) Cifuentes, Angel; Pikálek, Tomáš; Ondráčková, Petra; Amezcua-Correa, Rodrigo; Antonio-Lopez, José Enrique; Čižmár, Tomáš; Trägårdh, Johanna
    Multimode fiber-based endoscopes have recently emerged as a tool for minimally invasive endoscopy in tissue, at depths well beyond the reach of multiphoton imaging. Here, we demonstrate label-free second-harmonic generation (SHG) microscopy through such a fiber endoscope. We simultaneously fully control the excitation polarization state and the spatial distribution of the light at the fiber tip, and we use this to implement polarization-resolved SHG imaging, which allows imaging and identification of structural proteins such as collagen and myosin. We image mouse tail tendon and heart tissue, employing the endoscope at depths up to 1 mm, demonstrating that we can differentiate these structural proteins. This method has the potential for enabling instant and in situ diagnosis of tumors and fibrotic conditions in sensitive tissue with minimal damage.