Search Results

Now showing 1 - 10 of 76
  • Item
    Small-angle X-ray scattering from GaN nanowires on Si(111): facet truncation rods, facet roughness and Porod's law
    (Oxford [u.a.] : Blackwell, 2021) Kaganer, Vladimir M.; Konovalov, Oleg V.; Fernández-Garrido, Sergio
    Small-angle X-ray scattering from GaN nanowires grown on Si(111) is measured in the grazing-incidence geometry and modelled by means of a Monte Carlo simulation that takes into account the orientational distribution of the faceted nanowires and the roughness of their side facets. It is found that the scattering intensity at large wavevectors does not follow Porod's law I(q) ∝ q-4. The intensity depends on the orientation of the side facets with respect to the incident X-ray beam. It is maximum when the scattering vector is directed along a facet normal, reminiscent of surface truncation rod scattering. At large wavevectors q, the scattering intensity is reduced by surface roughness. A root-mean-square roughness of 0.9 nm, which is the height of just 3-4 atomic steps per micrometre-long facet, already gives rise to a strong intensity reduction. open access.
  • Item
    On the Promotion of Catalytic Reactions by Surface Acoustic Waves
    (Weinheim : Wiley-VCH, 2020) von Boehn, Bernhard; Foerster, Michael; von Boehn, Moritz; Prat, Jordi; Macià, Ferran; Casals, Blai; Khaliq, Muhammad Waqas; Hernández-Mínguez, Alberto; Aballe, Lucia; Imbihl, Ronald
    Surface acoustic waves (SAW) allow to manipulate surfaces with potential applications in catalysis, sensor and nanotechnology. SAWs were shown to cause a strong increase in catalytic activity and selectivity in many oxidation and decomposition reactions on metallic and oxidic catalysts. However, the promotion mechanism has not been unambiguously identified. Using stroboscopic X-ray photoelectron spectro-microscopy, we were able to evidence a sub-nanosecond work function change during propagation of 500 MHz SAWs on a 9 nm thick platinum film. We quantify the work function change to 455 μeV. Such a small variation rules out that electronic effects due to elastic deformation (strain) play a major role in the SAW-induced promotion of catalysis. In a second set of experiments, SAW-induced intermixing of a five monolayers thick Rh film on top of polycrystalline platinum was demonstrated to be due to enhanced thermal diffusion caused by an increase of the surface temperature by about 75 K when SAWs were excited. Reversible surface structural changes are suggested to be a major cause for catalytic promotion. © 2020 The Authors. Published by Wiley-VCH GmbH
  • Item
    X-ray diffraction from strongly bent crystals and spectroscopy of X-ray free-electron laser pulses
    (Oxford [u.a.] : Blackwell, 2020) Kaganer, Vladimir M.; Petrov, Ilia; Samoylova, Liubov
    The use of strongly bent crystals in spectrometers for pulses of a hard X-ray free-electron laser is explored theoretically. Diffraction is calculated in both dynamical and kinematical theories. It is shown that diffraction can be treated kinematically when the bending radius is small compared with the critical radius given by the ratio of the Bragg-case extinction length for the actual reflection to the Darwin width of this reflection. As a result, the spectral resolution is limited by the crystal thickness, rather than the extinction length, and can become better than the resolution of a planar dynamically diffracting crystal. As an example, it is demonstrated that spectra of the 12 keV pulses can be resolved in the 440 reflection from a 20 µm-thick diamond crystal bent to a radius of 10 cm. open access.
  • Item
    Silane-Mediated Expansion of Domains in Si-Doped κ-Ga2O3 Epitaxy and its Impact on the In-Plane Electronic Conduction
    (Weinheim : Wiley-VCH, 2022) Mazzolini, Piero; Fogarassy, Zsolt; Parisini, Antonella; Mezzadri, Francesco; Diercks, David; Bosi, Matteo; Seravalli, Luca; Sacchi, Anna; Spaggiari, Giulia; Bersani, Danilo; Bierwagen, Oliver; Janzen, Benjamin Moritz; Marggraf, Marcella Naomi; Wagner, Markus R.; Cora, Ildiko; Pécz, Béla; Tahraoui, Abbes; Bosio, Alessio; Borelli, Carmine; Leone, Stefano; Fornari, Roberto
    Unintentionally doped (001)-oriented orthorhombic κ-Ga2O3 epitaxial films on c-plane sapphire substrates are characterized by the presence of ≈ 10 nm wide columnar rotational domains that can severely inhibit in-plane electronic conduction. Comparing the in- and out-of-plane resistance on well-defined sample geometries, it is experimentally proved that the in-plane resistivity is at least ten times higher than the out-of-plane one. The introduction of silane during metal-organic vapor phase epitaxial growth not only allows for n-type Si extrinsic doping, but also results in the increase of more than one order of magnitude in the domain size (up to ≈ 300 nm) and mobility (highest µ ≈ 10 cm2V−1s−1, with corresponding lowest ρ ≈ 0.2 Ωcm). To qualitatively compare the mean domain dimension in κ-Ga2O3 epitaxial films, non-destructive experimental procedures are provided based on X-ray diffraction and Raman spectroscopy. The results of this study pave the way to significantly improved in-plane conduction in κ-Ga2O3 and its possible breakthrough in new generation electronics. The set of cross-linked experimental techniques and corresponding interpretation here proposed can apply to a wide range of material systems that suffer/benefit from domain-related functional properties.
  • Item
    Acoustically Driven Stark Effect in Transition Metal Dichalcogenide Monolayers
    (Washington, DC : ACS Publications, 2021) Scolfaro, Diego; Finamor, Matheus; Trinchão, Luca O.; Rosa, Bárbara L.T.; Chaves, Andrey; Santos, Paulo V.; Iikawa, Fernando; Couto Jr., Odilon D.D.
    The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 × 10-5 meV/(kV/cm)2, respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications. © 2021 The Authors. Published by American Chemical Society.
  • Item
    Long-term stability of GaAs/AlAs terahertz quantum-cascade lasers
    (New York, NY : American Inst. of Physics, 2022) Schrottke, L.; Lü, X.; Biermann, K.; Gellie, P.; Grahn, H.T.
    We have investigated high-performance GaAs/AlAs terahertz (THz) quantum-cascade lasers (QCLs) with respect to the long-term stability of their operating parameters. The output power of lasers that contain an additional, thick AlAs refractive-index contrast layer underneath the cascade structure decreases after three months by about 35%. The deterioration of these lasers is attributed to the oxidation processes in this contrast layer starting from the facets. However, GaAs/AlAs THz QCLs with an Al0.9Ga0.1As refractive-index contrast layer exhibit long-term stability of the operating parameters over many years even when they are exposed to atmospheric conditions. Therefore, these lasers are promising high-power radiation sources in the terahertz spectral region for commercial applications.
  • Item
    Ferroelectric Control of the Spin Texture in GeTe
    (Washington, DC : ACS Publ., 2018-1-30) Rinaldi, Christian; Varotto, Sara; Asa, Marco; Sławińska, Jagoda; Fujii, Jun; Vinai, Giovanni; Cecchi, Stefano; Di Sante, Domenico; Calarco, Raffaella; Vobornik, Ivana; Panaccione, Giancarlo; Picozzi, Silvia; Bertacco, Riccardo
    The electric and nonvolatile control of the spin texture in semiconductors would represent a fundamental step toward novel electronic devices combining memory and computing functionalities. Recently, GeTe has been theoretically proposed as the father compound of a new class of materials, namely ferroelectric Rashba semiconductors. They display bulk bands with giant Rashba-like splitting due to the inversion symmetry breaking arising from the ferroelectric polarization, thus allowing for the ferroelectric control of the spin. Here, we provide the experimental demonstration of the correlation between ferroelectricity and spin texture. A surface-engineering strategy is used to set two opposite predefined uniform ferroelectric polarizations, inward and outward, as monitored by piezoresponse force microscopy. Spin and angular resolved photoemission experiments show that these GeTe(111) surfaces display opposite sense of circulation of spin in bulk Rashba bands. Furthermore, we demonstrate the crafting of nonvolatile ferroelectric patterns in GeTe films at the nanoscale by using the conductive tip of an atomic force microscope. Based on the intimate link between ferroelectric polarization and spin in GeTe, ferroelectric patterning paves the way to the investigation of devices with engineered spin configurations.
  • Item
    Beam damage of single semiconductor nanowires during X-ray nanobeam diffraction experiments
    (Chester : IUCr, 2020) Al Hassan, Ali; Lähnemann, Jonas; Davtyan, Arman; Al-Humaidi, Mahmoud; Herranz, Jesús; Bahrami, Danial; Anjum, Taseer; Bertram, Florian; Dey, Arka Bikash; Geelhaar, Lutz; Pietsch, Ullrich
    Nanoprobe X-ray diffraction (nXRD) using focused synchrotron radiation is a powerful technique to study the structural properties of individual semiconductor nanowires. However, when performing the experiment under ambient conditions, the required high X-ray dose and prolonged exposure times can lead to radiation damage. To unveil the origin of radiation damage, a comparison is made of nXRD experiments carried out on individual semiconductor nanowires in their as-grown geometry both under ambient conditions and under He atmosphere at the microfocus station of the P08 beamline at the third-generation source PETRA III. Using an incident X-ray beam energy of 9 keV and photon flux of 1010 s-1, the axial lattice parameter and tilt of individual GaAs/In0.2Ga0.8As/GaAs core-shell nanowires were monitored by continuously recording reciprocal-space maps of the 111 Bragg reflection at a fixed spatial position over several hours. In addition, the emission properties of the (In,Ga)As quantum well, the atomic composition of the exposed nanowires and the nanowire morphology were studied by cathodoluminescence spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy, respectively, both prior to and after nXRD exposure. Nanowires exposed under ambient conditions show severe optical and morphological damage, which was reduced for nanowires exposed under He atmosphere. The observed damage can be largely attributed to an oxidation process from X-ray-induced ozone reactions in air. Due to the lower heat-transfer coefficient compared with GaAs, this oxide shell limits the heat transfer through the nanowire side facets, which is considered as the main channel of heat dissipation for nanowires in the as-grown geometry.
  • Item
    The impact of ultraviolet laser excitation during Raman spectroscopy of hexagonal boron nitride thin films
    (Chichester [u.a.] : Wiley, 2020) Karim, Marwa; Lopes, Joao Marcelo J.; Ramsteiner, Manfred
    We utilized excitation in the ultraviolet (UV) spectral range for the study of hexagonal boron nitride (h-BN) thin films on different substrates by Raman spectroscopy. Whereas UV excitation offers fundamental advantages for the investigation of h-BN and heterostructures with graphene, the actual Raman spectra recorded under ambient conditions reveal a temporal decay of the signal intensity. The disappearance of the Raman signal is found to be induced by thermally activated chemical reactions with ambient molecules at the h-BN surface. The chemical reactions could be strongly suppressed under vacuum conditions which, however, favor the formation of a carbonaceous surface contamination layer. For the improvement of the signal-to-noise ratio under ambient conditions, we propose a line-scan method for the acquisition of UV Raman spectra in atomically thin h-BN, a material which is expected to play a key role in future technologies based on 2D van der Waals heterostructures. © 2020 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons Ltd
  • Item
    Surface acoustic wave modulation of single photon emission from GaN/InGaN nanowire quantum dots
    (Bristol : IOP Publ., 2018) Lazić, S.; Chernysheva, E.; Hernández-Mínguez, A.; Santos, P.V.; van der Meulen, H.P.
    On-chip quantum information processing requires controllable quantum light sources that can be operated on-demand at high-speeds and with the possibility of in-situ control of the photon emission wavelength and its optical polarization properties. Here, we report on the dynamic control of the optical emission from core-shell GaN/InGaN nanowire (NW) heterostructures using radio frequency surface acoustic waves (SAWs). The SAWs are excited on the surface of a piezoelectric lithium niobate crystal equipped with a SAW delay line onto which the NWs were mechanically transferred. Luminescent quantum dot (QD)-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell were identified using stroboscopic micro-photoluminescence (micro-PL) spectroscopy. They exhibit narrow and almost fully linearly polarized emission lines in the micro-PL spectra and a pronounced anti-bunching signature of single photon emission in the photon correlation experiments. When the nanowire is perturbed by the propagating SAW, the embedded QD is periodically strained and its excitonic transitions are modulated by the acousto-mechanical coupling, giving rise to a spectral fine-tuning within a ~1.5 meV bandwidth at the acoustic frequency of ~330 MHz. This outcome can be further combined with spectral detection filtering for temporal control of the emitted photons. The effect of the SAW piezoelectric field on the QD charge population and on the optical polarization degree is also observed. The advantage of the acousto-optoelectric over other control schemes is that it allows in-situ manipulation of the optical emission properties over a wide frequency range (up to GHz frequencies).