Search Results

Now showing 1 - 10 of 13
  • Item
    Complex systems in the spotlight: next steps after the 2021 Nobel Prize in Physics
    (Bristol : IOP Publ., 2023) Bianconi, Ginestra; Arenas, Alex; Biamonte, Jacob; Carr, Lincoln D; Kahng, Byungnam; Kertesz, Janos; Kurths, Jürgen; Lü, Linyuan; Masoller, Cristina; Motter, Adilson E; Perc, Matjaž; Radicchi, Filippo; Ramaswamy, Ramakrishna; Rodrigues, Francisco A; Sales-Pardo, Marta; San Miguel, Maxi; Thurner, Stefan; Yasseri, Taha
    The 2021 Nobel Prize in Physics recognized the fundamental role of complex systems in the natural sciences. In order to celebrate this milestone, this editorial presents the point of view of the editorial board of JPhys Complexity on the achievements, challenges, and future prospects of the field. To distinguish the voice and the opinion of each editor, this editorial consists of a series of editor perspectives and reflections on few selected themes. A comprehensive and multi-faceted view of the field of complexity science emerges. We hope and trust that this open discussion will be of inspiration for future research on complex systems.
  • Item
    Impact of Mn-Pn intermixing on magnetic properties of an intrinsic magnetic topological insulator: the µSR perspective
    (Bristol : IOP Publ., 2023) Sahoo, M.; Salman, Z.; Allodi, G.; Isaeva, A.; Folkers, L.; Wolter, A.U.B.; Büchner, B.; De Renzi, R.
    We investigated the magnetic properties of polycrystalline samples of the intrinsic magnetic topological insulators MnPn2Te4, with pnictogen Pn = Sb, Bi, by bulk magnetization and μSR. DC susceptibility detects the onset of magnetic ordering at TN = 27 K and 24 K and a field dependence of the macroscopic magnetization compatible with ferri- (or ferro-) and atiferro- magnetic ordering, respectively. Weak transverse field (wTF) Muon Spin Rotation (μSR) confirms the homogeneous bulk nature of magnetic ordering at the same two distinct transition temperatures. Zero Field (ZF) μSR shows that the Sb based material displays a broader distribution of internal field at the muon, in accordance with a larger deviation from the stoichiomectric composition and a higher degree of positional disorder (Mn at the Pn(6c) site), which however does not affect significantly the sharpness of the thermodynamic transition, as detected by the muon magnetic volume fraction and the observability of a critical divergence in the longitudinal and transverse muon relaxation rates.
  • Item
    Foundations of plasma standards
    (Bristol : IOP Publ., 2023) Alves, Luís L.; Becker, Markus M.; van Dijk, Jan; Gans, Timo; Go, David B.; Stapelmann, Katharina; Tennyson, Jonathan; Turner, Miles M.; Kushner, Mark J.
    The field of low-temperature plasmas (LTPs) excels by virtue of its broad intellectual diversity, interdisciplinarity and range of applications. This great diversity also challenges researchers in communicating the outcomes of their investigations, as common practices and expectations for reporting vary widely in the many disciplines that either fall under the LTP umbrella or interact closely with LTP topics. These challenges encompass comparing measurements made in different laboratories, exchanging and sharing computer models, enabling reproducibility in experiments and computations using traceable and transparent methods and data, establishing metrics for reliability, and in translating fundamental findings to practice. In this paper, we address these challenges from the perspective of LTP standards for measurements, diagnostics, computations, reporting and plasma sources. This discussion on standards, or recommended best practices, and in some cases suggestions for standards or best practices, has the goal of improving communication, reproducibility and transparency within the LTP field and fields allied with LTPs. This discussion also acknowledges that standards and best practices, either recommended or at some point enforced, are ultimately a matter of judgment. These standards and recommended practices should not limit innovation nor prevent research breakthroughs from having real-time impact. Ultimately, the goal of our research community is to advance the entire LTP field and the many applications it touches through a shared set of expectations.
  • Item
    Heteroepitaxy of group IV materials for future device application
    (Bristol : IOP Publ., 2023) Yamamoto, Yuji; Wen, Wei-Chen; Tillack, Bernd
    Heteroepitxy of group IV materials (Si, SiGe, and Ge) has great potential for boosting Si-based novel device performance because of the possibility for strain, band gap/Fermi-level engineering, and applying emerging artificial materials such as a superlattice (SL) and nanodots. In order to control group IV heteroepitaxy processes, strain, interface, and surface energies are very essential parameters. They affect dislocation formation, interface steepness, reflow of deposited layers, and also surface reaction itself during the growth. Therefore, process control and crystallinity management of SiGe heteroepitaxy are difficult especially in the case of high Ge concentrations. In this paper, we review our results of abrupt SiGe/Si interface fabrication by introducing C-delta layers and the influence of strain on the surface reaction of SiGe. Three-dimensional self-ordered SiGe and Ge nanodot fabrication by proactively using strain and surface energies by depositing SiGe/Si and Ge/SiGe SL are also reviewed.
  • Item
    Vertical alignment control of self-ordered multilayered Ge nanodots on SiGe
    (Bristol : IOP Publ., 2023) Wen, Wei-Chen; Schubert, Markus Andreas; Tillack, Bernd; Yamamoto, Yuji
    Self-ordered multilayered Ge nanodots with SiGe spacers on a Si0.4Ge0.6 virtual substrate are fabricated using reduced-pressure chemical vapor deposition, and the mechanism of vertical ordering is investigated. The process conditions of Ge and SiGe layer deposition are H2-GeH4 at 550 °C and H2-SiH4-GeH4 at 500 °C-550 °C, respectively. By depositing the SiGe at 550 °C or increasing Ge content, the SiGe surface becomes smooth, resulting in vertically aligned Ge nanodots to reduce strain energy. Ge nanodots prefer to grow on the nanodot where the SiGe is relatively tensile strained due to the buried Ge nanodot underneath. By depositing at 500 °C and lowering Ge content, checkerboard-like surface forms, and the following Ge nanodots grow at staggered positions to reduce surface energy. The Ge nanodots are laterally aligned along the elastically soft 〈100〉 direction without pre-structuring resulting from the strain distribution.
  • Item
    High-mobility 4 μm MOVPE-grown (100) β-Ga2O3 film by parasitic particles suppression
    (Bristol : IOP Publ., 2023) Chou, Ta-Shun; Seyidov, Palvan; Bin Anooz, Saud; Grüneberg, Raimund; Rehm, Jana; Tran, Thi Thuy Vi; Fiedler, Andreas; Tetzner, Kornelius; Galazka, Zbigniew; Albrecht, Martin; Popp, Andreas
    In this work, we comprehensively investigate the development of unwanted parasitic particles in the MOVPE chamber while growing μm level films. The density of the parasitic particles is found to be pronounced at film thicknesses starting from >1.5 to 2 μm. These particles seem to induce structural defects such as twin lamellae, thereby harming the electrical properties of the grown film. The origin of the parasitic particle is attributed to the parasitic reactions within the chamber triggered by the promoted gas-phase reactions during the growth process, which can be largely reduced by increasing the total gas flow and decreasing the showerhead distance to the susceptor. A film thickness of up to 4 μm has been achieved after minimizing the density of parasitic particles. Thereby, RT Hall measurements reveal carrier mobilities of 160 cm2V−1s−1 at carrier concentrations of 5.7 × 1016cm−3
  • Item
    The meso scale as a frontier in interdisciplinary modeling of sustainability from local to global scales
    (Bristol : IOP Publ., 2023) Johnson, Justin Andrew; Brown, Molly E.; Corong, Erwin; Dietrich, Jan Philipp; C. Henry, Roslyn; Jeetze, Patrick José von; Leclère, David; Popp, Alexander; Thakrar, Sumil K.; Williams, David R.
    Achieving sustainable development requires understanding how human behavior and the environment interact across spatial scales. In particular, knowing how to manage tradeoffs between the environment and the economy, or between one spatial scale and another, necessitates a modeling approach that allows these different components to interact. Existing integrated local and global analyses provide key insights, but often fail to capture ‘meso-scale’ phenomena that operate at scales between the local and the global, leading to erroneous predictions and a constrained scope of analysis. Meso-scale phenomena are difficult to model because of their complexity and computational challenges, where adding additional scales can increase model run-time exponentially. These additions, however, are necessary to make models that include sufficient detail for policy-makers to assess tradeoffs. Here, we synthesize research that explicitly includes meso-scale phenomena and assess where further efforts might be fruitful in improving our predictions and expanding the scope of questions that sustainability science can answer. We emphasize five categories of models relevant to sustainability science, including biophysical models, integrated assessment models, land-use change models, earth-economy models and spatial downscaling models. We outline the technical and methodological challenges present in these areas of research and discuss seven directions for future research that will improve coverage of meso-scale effects. Additionally, we provide a specific worked example that shows the challenges present, and possible solutions, for modeling meso-scale phenomena in integrated earth-economy models.
  • Item
    More people too poor to move: divergent effects of climate change on global migration patterns
    (Bristol : IOP Publ., 2023) Rikani, Albano; Otto, Christian; Levermann, Anders; Schewe, Jacob
    The observed temperature increase due to anthropogenic carbon emissions has impacted economies worldwide. National income levels in origin and destination countries influence international migration. Emigration is relatively low not only from high income countries but also from very poor regions, which is explained in current migration theory by credit constraints and lower average education levels, among other reasons. These relationships suggest a potential non-linear, indirect effect of climate change on migration through this indirect channel. Here we explore this effect through a counterfactual analysis using observational data and a simple model of migration. We show that a world without climate change would have seen less migration during the past 30 years, but that this effect is strongly reduced due to inhibited mobility. Our framework suggests that migration within the Global South has been strongly reduced because these countries have seen less economic growth than they would have experienced without climate change. Importantly, climate change has impacted international migration in the richer and poorer parts of the world very differently. In the future, climate change may keep increasing global migration as it slows down countries’ transition across the middle-income range associated with the highest emigration rates.
  • Item
    Attributing synergies and trade-offs in water resources planning and management in the Volta River basin under climate change
    (Bristol : IOP Publ., 2023) Liersch, S.; Koch, H.; Abungba, J.A.; Salack, S.; Hattermann, F.F.
    To feed the growing population, achieve the Sustainable Development Goals, and fulfil the commitments of the Paris Agreement, West African countries need to invest in agricultural development and renewable energy, among other sectors. Irrigated agriculture, feeding millions of people, and hydropower, generating clean electricity, depend on water availability and compete for the resource. In the Volta basin, the planned 105 000 ha of irrigated land in Burkina Faso and Ghana could feed hundreds of thousands of people. However, irrigation in the dry season depends on upstream dams that change the river’s flow regime from intermittent to permanent, and at the same time irrigation water is no longer available for hydropower generation. Using an integrated eco-hydrological and water management model, we investigated the water demand and supply of three planned irrigation projects and the impacts of the planned Pwalugu multi-purpose dam on the hydropower potentials and water availability in the entire Volta basin. We found that future irrigation withdrawals would reduce the hydropower potential in the Volta basin by 79 GWh a−1 and the operation of Pwalugu by another 86 GWh a−1. Hence, Pwalugu contributes only about 101 GWh a−1 of its potential of 187 GWh a−1. Under climate change simulations, using an ensemble of eight bias-adjusted and downscaled GCMs, irrigation demand surprisingly did not increase. The higher evaporation losses due to higher temperatures were compensated by increasing precipitation while favouring hydropower generation. However, water availability at the irrigation site in Burkina Faso is clearly at its limit, while capacity in Ghana is not yet exhausted. Due to hydro-climatic differences in the Volta basin, the cost of irrigating one hectare of land in terms of lost hydropower potential follows a north-south gradient from the hot and dry north to the humid south. Nevertheless, food production should have priority over hydropower, which can be compensated by other renewables energies.
  • Item
    Terahertz absorption spectroscopy for measuring atomic oxygen densities in plasmas
    (Bristol : IOP Publ., 2023) Wubs, J.R.; Macherius, U.; Weltmann, K.-D.; Lü, X.; Röben, B.; Biermann, K.; Schrottke, L.; Grahn, H.T.; van Helden, J.H.
    This paper describes the first implementation of terahertz (THz) quantum cascade lasers for high-resolution absorption spectroscopy on plasmas. Absolute densities of ground state atomic oxygen were directly obtained by using the fine structure transition at approximately 4.75 THz. Measurements were performed on a low-pressure capacitively coupled radio frequency oxygen discharge. The detection limit in this arrangement was found to be 2 × 10 13 cm−3, while the measurement accuracy was within 5%, as demonstrated by reference measurements of a well-defined ammonia transition. The results show that the presented method is well suited to measure atomic oxygen densities, and it closes the THz gap for quantitative atomic density measurements in harsh environments such as plasmas.