Search Results

Now showing 1 - 10 of 14
  • Item
    Nanometer-resolved mechanical properties around GaN crystal surface steps
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2014) Buchwald, J.; Sarmanova, M.; Rauschenbach, B.; Mayr, S.G.
    The mechanical properties of surfaces and nanostructures deviate from their bulk counterparts due to surface stress and reduced dimensionality. Experimental indentation-based techniques present the challenge of measuring these effects, while avoiding artifacts caused by the measurement technique itself. We performed a molecular dynamics study to investigate the mechanical properties of a GaN step of only a few lattice constants step height and scrutinized its applicability to indentation experiments using a finite element approach (FEM). We show that the breakdown of half-space symmetry leads to an "artificial" reduction of the elastic properties of comparable lateral dimensions which overlays the effect of surface stress. Contact resonance atomic force microscopy (CR-AFM) was used to compare the simulation results with experiments.
  • Item
    Optimized diamond inverted nanocones for enhanced color center to fiber coupling
    (Melville, NY : American Inst. of Physics, 2021) Torun, Cem Güney; Schneider, Philipp-Immanuel; Hammerschmidt, Martin; Burger, Sven; Munns, Joseph H. D.; Schröder, Tim
    Nanostructures can be used for boosting the light outcoupling of color centers in diamond; however, the fiber coupling performance of these nanostructures is rarely investigated. Here, we use a finite element method for computing the emission from color centers in inverted nanocones and the overlap of this emission with the propagation mode in a single-mode fiber. Using different figures of merit, the inverted nanocone parameters are optimized to obtain maximal fiber coupling efficiency, free-space collection efficiency, or rate enhancement. The optimized inverted nanocone designs show promising results with 66% fiber coupling or 83% free-space coupling efficiency at the tin-vacancy center zero-phonon line wavelength of 619 nm. Moreover, when evaluated for broadband performance, the optimized designs show 55% and 76% for fiber coupling and free-space efficiencies, respectively, for collecting the full tin-vacancy emission spectrum at room temperature. An analysis of fabrication insensitivity indicates that these nanostructures are robust against imperfections. For maximum emission rate into a fiber mode, a design with a Purcell factor of 2.34 is identified. Finally, possible improvements offered by a hybrid inverted nanocone, formed by patterning into two different materials, are investigated and increase the achievable fiber coupling efficiency to 71%. © 2021 Author(s).
  • Item
    Subwavelength population density gratings in resonant medium created by few-cycle pulses
    (Bristol : IOP Publ., 2017) Arkhipov, R.M.; Arkhipov, M.V.; Pakhomov, A.V.; Babushkin, I.; Demircan, A.; Morgner, U.; Rosanov, N.N.
    We consider theoretically recently proposed a new possibility of creation, erasing and ultrafast control of population density grating. Such grating can be created in resonant medium when ultrashort pulses with duration smaller than relaxation times in the resonant medium (coherent light matter interactions) propagate without overlapping in this medium. Possible applications in the ultrafast optics such as optical switcher and laser beam deflector are discussed.
  • Item
    Superconductivity in multi-phase Mg-B-O compounds
    (Amsterdam [u.a.] : Elsevier, 2012) Prikhna, T.; Gawalek, W.; Eisterer, M.; Weber, H.W.; Noudem, J.; Sokolovsky, V.; Chaud, X.; Moshchil, V.; Karpets, M.; Kovylaev, V.; Borimskiy, A.; Tkach, V.; Kozyrev, A.; Kuznietsov, R.; Dellith, J.; Shmidt, C.; Basyuk, T.; Litzkendorf, D.; Karau, F.; Dittrich, U.; Tomsic, M.
    Structures of MgB2-based materials manufactured under pressure (up to 2 GPa) by different methods having high superconducting performance and connectivity are multiphase and contain different Mg-B-O compounds. Some oxygen can be incorporated into MgB2 and boron into MgO structures, MgBx (X=4-20) inclusions contain practically no oxygen. Regulating manufacturing temperature, pressure, introducing additions one can influence oxygen and boron distribution in the materials and thus, affect the formation, amount and sizes of Mg-B-O and MgBx inclusions and changing type of pinning, pinning force and so affect critical current density jc. The boron concentration increase in initial Mg and B mixture allows obtaining sample containing 88.5 wt% of MgB12 with Tc of 37.4 K (estimated magnetically).
  • Item
    Process flow to integrate nanostructures on silicon grass in surface micromachined systems
    (Bristol : IOP Publ., 2016) Mehner, H.; Müller, L.; Biermann, S.; Hänschke, F.; Hoffmann, M.
    The process flow to integrate metallic nanostructures in surface micromachining processes is presented. The nanostructures are generated by evaporation of microstructured silicon grass with metal. The process flow is based on the lift-off of a thin amorphous silicon layer deposited using a CVD process. All steps feature a low temperature load beneath 120 °C and high compatibility with many materials as only well-established chemicals are used. As a result metallic nanostructures usable for optical applications can be generated as part of multilayered microsystems fabricated in surface micromachining.
  • Item
    Composition profiling of inhomogeneous SiGe nanostructures by Raman spectroscopy
    (New York, NY [u.a.] : Springer, 2012) Picco, A.; Bonera, E.; Pezzoli, F.; Grilli, E.; Schmidt, O.G.; Isa, F.; Cecchi, S.; Guzzi, M.
    In this work, we present an experimental procedure to measure the composition distribution within inhomogeneous SiGe nanostructures. The method is based on the Raman spectra of the nanostructures, quantitatively analyzed through the knowledge of the scattering efficiency of SiGe as a function of composition and excitation wavelength. The accuracy of the method and its limitations are evidenced through the analysis of a multilayer and of self-assembled islands.
  • Item
    Towards a life-time-limited 8-octave-infrared photoconductive germanium detector
    (Bristol : IOP Publ., 2015) Pavlov, S.G.; Deßmann, N.; Pohl, A.; Abrosimov, N.V.; Mittendorff, M.; Winnerl, S.; Zhukavin, R.K; Tsyplenkov, V.V.; Shengurov, D.V.; Shastin, V.N.; Hübers, H.-W.
    Ultrafast, ultra-broad-band photoconductive detector based on heavily doped and highly compensated germanium has been demonstrated. Such a material demonstrates optical sensitivity in the more than 8 octaves, in the infrared, from about 2 mm to about 8 μm. The spectral sensitivity peaks up between 2 THz and 2.5 THz and is slowly reduced towards lower and higher frequencies. The life times of free electrons/holes measured by a pump-probe technique approach a few tenths of picoseconds and remain almost independent on the optical input intensity and on the temperature of a detector in the operation range. During operation, a detector is cooled down to liquid helium temperature but has been approved to detect, with a reduced sensitivity, up to liquid nitrogen temperature. The response time is shorter than 200 ps that is significantly faster than previously reported times.
  • Item
    The new ultra high-speed all-optical coherent streak-camera
    (Bristol : IOP Publ., 2015) Arkhipov, R.M.; Arkhipov, M.V.; Egorov, V.S.; Chekhonin, I.A.; Chekhonin, M.A.; Bagayev, S.N.
    In the present paper a new type of ultra high-speed all-optical coherent streak-camera was developed. It was shown that a thin resonant film (quantum dots or molecules) could radiate the angular sequence of delayed ultra-short pulses if a transverse spatial periodic distribution of the laser pump field amplitude has a triangle shape.
  • Item
    Terahertz emission from lithium doped silicon under continuous wave interband optical excitation
    (Bristol : IOP Publ., 2015) Andrianov, A.V.; Zakhar'in, A.O.; Zhukavin, R.K.; Shastin, V.N.; Abrosimov, N.V.
    We report on experimental observation and study of terahertz emission from lithium doped silicon crystals under continuous wave band-to-band optical excitation. It is shown that radiative transitions of electrons from 2P excited states of lithium donor to the 1S(A1) donor ground state prevail in the emission spectrum. The terahertz emission occurs due to capture of nonequilibrium electrons to charged donors, which in turn are generated in the crystal as a result of impurity assisted electron-hole recombination. Besides the intracentre radiative transitions the terahertz emission spectrum exhibits also features at about 12.7 and 15.27 meV, which could be related to intraexciton transitions and transitions from the continuum to the free exciton ground state.
  • Item
    Nanostructures on fused silica surfaces produced by ion beam sputtering with Al co-deposition
    (Heidelberg [u.a.] : Springer, 2017) Liu, Ying; Hirsch, Dietmar; Fechner, Renate; Hong, Yilin; Fu, Shaojun; Frost, Frank; Rauschenbach, Bernd
    The ion beam sputtering (IBS) of smooth mono-elemental Si with impurity co-deposition is extended to a pre-rippled binary compound surface of fused silica (SiO2). The dependence of the rms roughness and the deposited amount of Al on the distance from the Al source under Ar+ IBS with Al co-deposition was investigated on smooth SiO2, pre-rippled SiO2, and smooth Si surfaces, using atomic force microscopy and X-ray photoelectron spectroscopy. Although the amounts of Al deposited on these three surfaces all decreased with increasing distance from the Al target, the morphology and rms roughness of the smooth Si surface did not demonstrate a strong distance dependence. In contrast to smooth Si, the rms roughness of both the smooth and pre-rippled SiO2 surfaces exhibited a similar distance evolution trend of increasing, decreasing, and final stabilization at the distance where the results were similar to those obtained without Al co-deposition. However, the pre-rippled SiO2 surfaces showed a stronger modulation of rms roughness than the smooth surfaces. At the incidence angles of 60° and 70°, dot-decorated ripples and roof-tiles were formed on the smooth SiO2 surfaces, respectively, whereas nanostructures of closely aligned grains and blazed facets were generated on the pre-rippled SiO2, respectively. The combination of impurity co-deposition with pre-rippled surfaces was found to facilitate the formation of novel types of nanostructures and morphological growth. The initial ripples act as a template to guide the preferential deposition of Al on the tops of the ripples or the ripple sides facing the Al wedge, but not in the valleys between the ripples, leading to 2D grains and quasi-blazed grating, which offer significant promise in optical applications. The rms roughness enhancement is attributed not to AlSi, but to AlOxFy compounds originating mainly from the Al source.