Search Results

Now showing 1 - 4 of 4
  • Item
    Phase formation and high-temperature stability of very thin co-sputtered Ti-Al and multilayered Ti/Al films on thermally oxidized si substrates
    (Basel : MDPI AG, 2020) Seifert, M.; Lattner, E.; Menzel, S.B.; Oswald, S.; Gemming, T.
    Ti-Al thin films with a thickness of 200 nm were prepared either by co-sputtering from elemental Ti and Al targets or as Ti/Al multilayers with 10 and 20 nm individual layer thickness on thermally oxidized Si substrates. Some of the films were covered with a 20-nm-thick SiO2 layer, which was used as an oxidation protection against the ambient atmosphere. The films were annealed at up to 800 °C in high vacuum for 10 h, and the phase formation as well as the film architecture was analyzed by X-ray diffraction, cross section, and transmission electron microscopy, as well as Auger electron and X-ray photoelectron spectroscopy. The results reveal that the co-sputtered films remained amorphous after annealing at 600 °C independent on the presence of the SiO2 cover layer. In contrast to this, the γ-TiAl phase was formed in the multilayer films at this temperature. After annealing at 800 °C, all films were degraded completely despite the presence of the cover layer. In addition, a strong chemical reaction between the Ti and SiO2 of the cover layer and the substrate took place, resulting in the formation of Ti silicide. In the multilayer samples, this reaction already started at 600 °C.
  • Item
    Phenomenology of iron-assisted ion beam pattern formation on Si(001)
    (Bristol : IOP, 2011) MacKo, S.; Frost, F.; Engler, M.; Hirsch, D.; Höche, T.; Grenzer, J.; Michely, T.
    Pattern formation on Si(001) through 2 keV Kr+ ion beam erosion of Si(001) at an incident angle of # = 30° and in the presence of sputter codeposition or co-evaporation of Fe is investigated by using in situ scanning tunneling microscopy, ex situ atomic force microscopy and electron microscopy. The phenomenology of pattern formation is presented, and experiments are conducted to rule out or determine the processes of relevance in ion beam pattern formation on Si(001) with impurities. Special attention is given to the determination of morphological phase boundaries and their origin. Height fluctuations, local flux variations, induced chemical inhomogeneities, silicide formation and ensuing composition-dependent sputtering are found to be of relevance for pattern formation.
  • Item
    Iron-assisted ion beam patterning of Si(001) in the crystalline regime
    (Bristol : IOP, 2012) Macko, S.; Grenzer, J.; Frost, F.; Engler, M.; Hirsch, D.; Fritzsche, M.; Mücklich, A.; Michely, T.
    We present ion beam erosion experiments on Si(001) with simultaneous sputter co-deposition of steel at 660 K. At this temperature, the sample remains within the crystalline regime during ion exposure and pattern formation takes place by phase separation of Si and iron-silicide. After an ion fluence of F ≈ 5.9×10 21 ions m -2, investigations by atomic force microscopy and scanning electron microscopy identify sponge, segmented wall and pillar patterns with high aspect ratios and heights of up to 200 nm. Grazing incidence x-ray diffraction and transmission electron microscopy reveal the structures to be composed of polycrystalline iron-silicide. The observed pattern formation is compared to that in the range of 140-440K under otherwise identical conditions, where a thin amorphous layer forms due to ion bombardment.
  • Item
    Self-organized formation of unidirectional and quasi-one-dimensional metallic Tb silicide nanowires on Si(110)
    (Amsterdam [u.a.] : Elsevier, 2022) Appelfeller, Stephan; Franz, Martin; Karadag, Murat; Kubicki, Milan; Zielinski, Robert; Krivenkov, Maxim; Varykhalov, Andrei; Preobrajenski, Alexei; Dähne, Mario
    Terbium induced nanostructures on Si(110) and their growth are thoroughly characterized by low energy electron diffraction, scanning tunneling microscopy and spectroscopy, core-level and valence band photoelectron spectroscopy, and angle-resolved photoelectron spectroscopy. For low Tb coverage, a wetting layer forms with its surface fraction continuously decreasing with increasing Tb coverage in favor of the formation of unidirectional Tb silicide nanowires. These nanowires show high aspect ratios for high annealing temperatures or on substrates already containing Tb in the bulk. Both wetting layer and nanowires are stable for temperatures up to 750°C. In contrast to the nanowires, the wetting layer is characterized by a band gap. Thus, the metallic nanowires, which show a quasi-one-dimensional electronic band structure, are embedded in a semiconducting surrounding of wetting layer and substrate, insulating the nanowires from each other.