Search Results

Now showing 1 - 10 of 11
  • Item
    Low temperature isolation of a dinuclear silver complex of the cyclotetraphosphane [ClP(μ-PMes*)]2
    (London : Soc., 2015) Bresien, Jonas; Schulz, Axel; Villinger, Alexander
    The reaction of the cyclotetraphosphane [ClP(μ-PMes*)]2 (1, Mes* = 2,4,6-tri-tert-butylphenyl) with Ag[Al(ORF)4] (RF = CH(CF3)2) resulted in a labile, dinuclear silver complex of 1, which eliminates AgCl above −30 °C. Its properties were investigated by spectroscopic methods, single crystal X-ray diffraction and DFT calculations.
  • Item
    Metal–ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand
    (London : Soc., 2016) Eijsink, Linda E.; Perdriau, Sébastien C. P.; de Vries, Johannes G.; Otten, Edwin
    The pincer complex (PNN)RuH(CO), with a de-aromatized pyridine in the ligand backbone, is shown to react with nitriles in a metal–ligand cooperative manner. This leads to the formation of a series of complexes with new Ru–N(nitrile) and C(ligand)–C(nitrile) bonds. The initial nitrile cycloaddition products, the ketimido complexes 3, have a Brønsted basic (nitrile-derived) Ru–N fragment. This is able to deprotonate a CH2 side-arm of the pincer ligand to give ketimine complexes (4) with a de-aromatized pyridine backbone. Alternatively, the presence of a CH2 group adjacent to the nitrile functionality can lead to tautomerization to an enamido complex (5). Variable-temperature NMR studies and DFT calculations provide insight in the relative stability of these compounds and highlight the importance of their facile interconversion in the context of subsequent nitrile transformations.
  • Item
    Dinuclear lanthanide complexes supported by a hybrid salicylaldiminato/calix[4]arene-ligand: Synthesis, structure, and magnetic and luminescence properties of (HNEt3)[Ln2(HL)(L)] (Ln = SmIII, EuIII, GdIII, TbIII)
    (London : Soc., 2019) Ullmann, Steve; Hahn, Peter; Blömer, Laura; Mehnert, Anne; Laube, Christian; Abel, Bernd; Kersting, Berthold
    The synthesis, structures, and properties of a new calix[4]arene ligand with an appended salicylaldimine unit (H4L = 25-[2-((2-methylphenol)imino)ethoxy]-26,27,28-trihydroxy-calix[4]arene) and four lanthanide complexes (HNEt3)[Ln2(HL)(L)] (Ln = SmIII (4), EuIII (5), GdIII (6), and TbIII (7)) are reported. X-ray crystallographic analysis (for 4 and 6) reveals an isostructural series of dimeric complexes with a triply-bridged NO3Ln(μ-O)2(OH⋯O)LnO3N core and two seven coordinated lanthanide ions. According to UV-vis spectrometric titrations in MeCN and ESI-MS the dimeric nature is maintained in solution. The apparent stability constants range between logK = 5.8 and 6.3. The appended salicylaldimines sensitize EuIII and TbIII emission (λexc 311 nm) in the solid state or immersed in a polycarbonate glass at 77 K (for 5, 7) and at 295 K (for 7). © The Royal Society of Chemistry 2019.
  • Item
    Raman and NMR spectroscopic and theoretical investigations of the cubic laves-phases REAl2 (RE = Sc, Y, La, Yb, Lu)
    (London : Soc., 2023) Gießelmann, Elias C. J.; Engel, Stefan; Kostusiak, Weronika; Zhang, Yuemei; Herbeck-Engel, Petra; Kickelbick, Guido; Janka, Oliver
    The cubic Laves-phase aluminides REAl2 with RE = Sc, Y, La, Yb and Lu were prepared from the elements by arc-melting or using refractory metal ampoules and induction heating. They all crystallize in the cubic crystal system with space group Fd3̄m and adopt the MgCu2 type structure. The title compounds were characterized by powder X-ray diffraction and spectroscopically investigated using Raman and 27Al and in the case of ScAl2 by 45Sc solid-state MAS NMR. In both, the Raman and NMR spectra, the aluminides exhibit only one signal due to the crystal structure. DFT calculations were used to calculate Bader charges illustrating the charge transfer in these compounds along with NMR parameters and densities of states. Finally, the bonding situation was assessed by means of ELF calculations rendering these compounds aluminides with positively charged REδ+ cations embedded in an [Al2]δ− polyanion.
  • Item
    Mixed-ligand lanthanide complexes supported by ditopic bis(imino-methyl)-phenol/calix[4]arene macrocycles: synthesis, structures, and luminescence properties of [Ln2(L2)(MeOH)2] (Ln = La, Eu, Tb, Yb)
    (London : Soc., 2020) Ullmann, Steve; Hahn, Peter; Mini, Parvathy; Tuck, Kellie L.; Kahnt, Axel; Abel, Bernd; Gutierrez Suburu, Matias E.; Strassert, Cristian A.; Kersting, Berthold
    The lanthanide binding ability of a macrocyclic ligand H6L2 comprising two bis(iminomethyl)phenol and two calix[4]arene units has been studied. H6L2 is a ditopic ligand which provides dinuclear neutral complexes of composition [Ln2(L2)(MeOH)2] (Ln = La (1), Eu (2), Tb (3), and Yb (4)) in very good yield. X-ray crystal structure analyses for 2 and 3 show that (L2)6- accommodates two seven coordinated lanthanide ions in a distorted monocapped trigonal prismatic/octahedral coordination environment. UV-vis spectroscopic titrations performed with La3+, Eu3+, Tb3+ and Yb3+ ions in mixed MeOH/CH2Cl2 solution (I = 0.01 M NBu4PF6) reveal that a 2 : 1 (metal : ligand) stoichiometry is present in solution, with log K11 and K21 values ranging from 5.25 to 6.64. The ratio α = K11/K21 of the stepwise formation constants for the mononuclear (L2 + M = ML2, log K11) and the dinuclear complexes (ML2 + M = M2L2, log K21) was found to be invariably smaller than unity indicating that the binding of the first Ln3+ ion augments the binding of the second Ln3+ ion. The present complexes are less luminescent than other seven-coordinated Eu and Tb complexes, which can be traced to vibrational relaxation of excited EuIII and TbIII states by the coligated MeOH and H2O molecules and/or low-lying ligand-to-metal charge-transfer (LMCT) states. © 2020 The Royal Society of Chemistry.
  • Item
    Correction: Increasing steric demand through flexible bulk – primary phosphanes with 2,6-bis(benzhydryl)phenyl backbones
    (London : Soc., 2019) Bresien, Jonas; Goicoechea, Jose M.; Hinz, Alexander; Scharnhölz, Moritz T.; Schulz, Axel; Suhrbier, Tim; Villinger, Alexander
    Correction for 'Increasing steric demand through flexible bulk-primary phosphanes with 2,6-bis(benzhydryl)phenyl backbones' by Jonas Bresien et al., Dalton Trans., 2019, 48, 3786-3794. © 2019 The Royal Society of Chemistry.
  • Item
    Synthetic strategies to bicyclic tetraphosphanes using P1, P2 and P4 building blocks
    (London : Soc., 2015) Bresien, Jonas; Faust, Kirill; Hering-Junghans, Christian; Rothe, Julia; Schulz, Axel; Villinger, Alexander
    Different reactions of Mes* substituted phosphanes (Mes* = 2,4,6-tri-tert-butylphenyl) led to the formation of the bicyclic tetraphosphane Mes*P4Mes* (5) and its unknown Lewis acid adduct 5·GaCl3. In this context, the endo–exo isomer of 5 was fully characterized for the first time. The synthesis was achieved by reactions involving “self-assembly” of the P4 scaffold from P1 building blocks (i.e. primary phosphanes) or by reactions starting from P2 or P4 scaffolds (i.e. a diphosphene or cyclic tetraphosphane). Furthermore, interconversion between the exo–exo and endo–exo isomer were studied by 31P NMR spectroscopy. All compounds were fully characterized by experimental as well as computational methods.
  • Item
    Reduction of dichloro(diaza-phospha)stibanes – isolation of a donor-stabilized distibenium dication
    (London : Soc., 2016) Hinz, Alexander; Rothe, Julia; Schulz, Axel; Villinger, Alexander
    A reaction of antimonytrichloride SbCl3 with potassium bis(terphenylimino)phosphide K[(TerN)2P] smoothly afforded a novel class of mixed diazadipnictanes, namely dichloro(diaza-phospha)stibane [Ter2N2P(III)Sb(III)Cl2], which is considered to exist as open chain-like and cyclic isomers in an equilibrium. [Ter2N2PSbCl2] is a versatile starting material for reduction and halide abstraction experiments. Halide abstraction led to the formation of a cyclic diazastibaphosphenium cation [P(μ-NTer)2SbCl]+. Upon reduction of [Ter2N2PSbCl2], the transient existence of the novel mixed biradicaloid [P(μ-NTer)2Sb] was proven by a trapping experiment with an alkyne, while reduction in the absence of trapping agents afforded the eight-membered heterocycle [Sb2-{μ-(TerN)2P}2]. This constitutional isomer of a dimerized biradicaloid features a bonding situation that indicates the presence of a donor-stabilized [Sb2]2+ ion.
  • Item
    Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications
    (London : Soc., 2014) Appelhans, Dietmar; Klajnert-Maculewicz, Barbara; Janaszewska, Anna; Lazniewska, Joanna; Voit, Brigitte
    In this review we highlight the potential for biomedical applications of dendritic glycopolymers based on polyamine scaffolds. The complex interplay of the molecular characteristics of the dendritic architectures and their specific interactions with various (bio)molecules are elucidated with various examples. A special role of the individual sugar units attached to the dendritic scaffolds and their density is identified, which govern ionic and H-bond interactions, and biological targeting, but to a large extent are also responsible for the significantly reduced toxicity of the dendritic glycopolymers compared to their polyamine scaffolds. Thus, the application of dendritic glycopolymers in drug delivery systems for gene transfection but also as therapeutics in neurodegenerative diseases has great promise.
  • Item
    Evolution of epitaxial semiconductor nanodots and nanowires from supersaturated wetting layers
    (London : Soc., 2014) Zhang, Jianjun; Brehm, Moritz; Grydlik, Martyna; Schmidt, Oliver G.
    In this tutorial we review recent progress in the design and growth of epitaxial semiconductor nanostructures in lattice-mismatched material systems. We focus on the Ge on Si model system after pointing out the similarities to III–V and other growth systems qualitatively as well as quantitatively. During material deposition, the first layers of the epitaxial film wet the surface before the formation of strain-driven three-dimensional nanostructures. In particular, we stress that the supersaturation of the wetting layer (WL), whose relevance is often neglected, plays a key role in determining the nucleation and growth of nanodots (NDs), nanodot-molecules and nanowires (NWs). At elevated growth temperatures the Ge reservoir in the planar, supersaturated WL is abruptly consumed and generates NDs with highly homogeneous sizes – a process mainly driven by elastic energy minimization. Furthermore, the careful control of the supersaturated Ge layer allows us to obtain perfectly site-controlled, ordered NDs or ND-molecules on pit-patterned substrates for a broad range of pit-periods. At low growth temperatures subtle interplays between surface energies of dominant crystal facets in the system drive the material transfer from the supersaturated WL into the elongating NWs growing horizontally, dislocation- and catalyst-free on the substrate surface. Due to the similarities in the formation of nanostructures in different epitaxial semiconductor systems we expect that the observation of the novel growth phenomena described in this Tutorial Review for Ge/Si should be relevant for other lattice-mismatched heterostructure systems, too.