Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Wave trains, solitons and modulation theory in FPU chains

2006, Dreyer, Wolfgang, Herrmann, Michael, Rademacher, Jens D.M.

We present an overview of recent results concerning wave trains, solitons and their modulation in FPU chains. We take a thermodynamic perspective and use hyperbolic scaling of particle index and time in order to pass to a macroscopic continuum limit. While strong convergence yields the well-known p-system of mass and momentum conservation, we generally obtain a weak form of it in terms of Young measures. The modulation approach accounts for microscopic oscillations, which we interpret as temperature, causing convergence only in a weak, average sense. We present the arising Whitham modulation equations in a thermodynamic form, as well as analytic and numerical tools for the resolution of the modulated wave trains. As a prototype for the occurrence of temperature from oscillation-free initial data, we discuss various Riemann problems, and the arising dispersive shock fans, which replace Lax-shocks. We predict scaling and jump conditions assuming a generic soliton at the shock front.

Loading...
Thumbnail Image
Item

Dispersive stability of infinite dimensional Hamiltonian systems on lattices

2009, Mielke, Alexander, Patz, Carsten

We derive dispersive stability results for oscillator chains like the FPU chain or the discrete Klein-Gordon chain. If the nonlinearity is of degree higher than 4, then small localized initial data decay like in the linear case. For this, we provide sharp decay estimates for the linearized problem using oscillatory integrals and avoiding the nonoptimal interpolation between different $ell^p$ spaces