Search Results

Now showing 1 - 8 of 8
Loading...
Thumbnail Image
Item

Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

2014, Burghoorn, M., Kniknie, B., van Deelen, J., Xu, M., Vroon, Z., van Ee, R., van de Belt, R., Buskens, P.

Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913-at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length. © 2014 Author(s).

Loading...
Thumbnail Image
Item

Nanoscale mechanical surface properties of single crystalline martensitic Ni-Mn-Ga ferromagnetic shape memory alloys

2012, Jakob, A.M., Müller, M., Rauschenbach, B., Mayr, S.G.

Located beyond the resolution limit of nanoindentation, contact resonance atomic force microscopy (CR-AFM) is employed for nano-mechanical surface characterization of single crystalline 14M modulated martensitic Ni-Mn-Ga (NMG) thin films grown by magnetron sputter deposition on (001) MgO substrates. Comparing experimental indentation moduli-obtained with CR-AFM-with theoretical predictions based on density functional theory (DFT) indicates the central role of pseudo plasticity and inter-martensitic phase transitions. Spatially highly resolved mechanical imaging enables the visualization of twin boundaries and allows for the assessment of their impact on mechanical behavior at the nanoscale. The CR-AFM technique is also briefly reviewed. Its advantages and drawbacks are carefully addressed.

Loading...
Thumbnail Image
Item

Transformation of epitaxial NiMnGa/InGaAs nanomembranes grown on GaAs substrates into freestanding microtubes

2016, Müller, C., Neckel, I., Monecke, M., Dzhagan, V., Salvan, G., Schulze, S., Baunack, S., Gemming, T., Oswald, S., Engemaiere, V., Mosca, D.H.

We report the fabrication of Ni2.7Mn0.9Ga0.4/InGaAs bilayers on GaAs (001)/InGaAs substrates by molecular beam epitaxy. To form freestanding microtubes the bilayers have been released from the substrate by strain engineering. Microtubes with up to three windings have been successfully realized by tailoring the size and strain of the bilayer. The structure and magnetic properties of both, the initial films and the rolled-up microtubes, are investigated by electron microscopy, X-ray techniques and magnetization measurements. A tetragonal lattice with c/a = 2.03 (film) and c/a = 2.01 (tube) is identified for the Ni2.7Mn0.9Ga0.4 alloy. Furthermore, a significant influence of the cylindrical geometry and strain relaxation induced by roll-up on the magnetic properties of the tube is found.

Loading...
Thumbnail Image
Item

Large superplastic strain in non-modulated epitaxial Ni-Mn-Ga films

2010, Yeduru, S.R., Backen, A., Fahler, S., Schultz, L., Kohl, M.

The phase transformation and superplastic characteristics of free-standing epitaxial Ni-Mn-Ga stripes are reported. The stripes are prepared by micromachining a 1 μm thick Ni-Mn-Ga film sputter-deposited on a single crystalline MgO (100) substrate using optical lithography and a Chromium-based sacrificial layer technology. The stripes are oriented at angles of 0 and 45 degrees with respect to the Ni-Mn-Ga unit cell. Electrical resistance versus temperature characteristics reveal a reversible thermally induced phase transformation between 169°C and 191°C. Stress-strain measurements are performed with the stress applied along the [100]Ni-Mn-Ga as well as [110]Ni-Mn-Ga direction. Depending on the orientation, the twinning stress ranges between 25 and 30 MPa, respectively. For the [100] Ni-Mn-Ga and [110]Ni-Mn-Ga directions, superplastic behaviour with a strain plateau of 12 % and 4% are observed, respectively, indicating stress-induced reorientation of non-modulated martensite variants.

Loading...
Thumbnail Image
Item

Experimental electronic structure of In2O3 and Ga2O3

2011, Janowitz, C., Scherer, V., Mohamed, M., Krapf, A., Dwelk, H., Manzke, R., Galazka, Z., Uecker, R., Irmscher, K., Fornari, R., Michling, M., Schmeißer, D., Weber, J.R., Varley, J.B., Van De Walle, C.G.

Transparent conducting oxides (TCOs) pose a number of serious challenges. In addition to the pursuit of high-quality single crystals and thin films, their application has to be preceded by a thorough understanding of their peculiar electronic structure. It is of fundamental interest to understand why these materials, transparent up to the UV spectral regime, behave also as conductors. Here we investigate In2O3 and Ga2O3, two binary oxides, which show the smallest and largest optical gaps among conventional n-type TCOs. The investigations on the electronic structure were performed on high-quality n-type single crystals showing carrier densities of ∼1019 cm-3 (In2O3) and ∼1017 cm-3(Ga2O3). The subjects addressed for both materials are: the determination of the band structure along high-symmetry directions and fundamental gaps by angular resolved photoemission (ARPES). We also address the orbital character of the valence- and conduction-band regions by exploiting photoemission cross.

Loading...
Thumbnail Image
Item

Tribocorrosion behavior of β-type Ti-Nb-Ga alloys in a physiological solution

2023, Alberta, Ludovico Andrea, Vishnu, Jithin, Douest, Yohan, Perrin, Kevin, Trunfio-Sfarghiu, Ana-Maria, Courtois, Nicolas, Gebert, Annett, Ter-Ovanessian, Benoit, Calin, Mariana

Tribo-electrochemical behavior in physiological solution of two β-type (100-x)(Ti-45Nb)-xGa (x = 4, 8 wt%) alloys, alongside β-Ti-45Nb and medical grade Ti-6Al-4V ELI, was investigated. Microstructure and mechanical behavior were evaluated by X-ray diffraction, microhardness and ultrasonic method. Tribocorrosion tests (open circuit potential, anodic potentiostatic tests) were performed using a reciprocating pin-on-disk tribometer under constant load. Degradation mechanisms are similar for the alloys: plastic deformation, delamination, abrasive and adhesive wear. Among the β-Ti-Nb alloys, an improved wear resistance with lower damage was remarked for β-92(Ti-45Nb)-8Ga alloy, attributed to increased microhardness. Content of Ga3+ ions released in the test solutions were found to be in very low amounts (few ppb). Addition of Ga to Ti-45Nb resulted in improved corrosion resistance under mechanical loading.

Loading...
Thumbnail Image
Item

Effect of minor gallium addition on corrosion, passivity, and antibacterial behaviour of novel β-type Ti–Nb alloys

2023, Akman, Adnan, Alberta, Ludovico Andrea, Giraldo-Osorno, Paula Milena, Turner, Adam Benedict, Hantusch, Martin, Palmquist, Anders, Trobos, Margarita, Calin, Mariana, Gebert, Annett

Metastable Ti–Nb alloys are promising bone-implant materials due to improved mechanical biofunctionality and biocompatibility. To overcome increasing bacterial infection risk, alloying with antibacterial elements is a promising strategy. This study investigates the effect of minor gallium (Ga) additions (4, 8 wt% Ga) to as-cast and solution-treated β-type Ti–45Nb-based alloy (96(Ti–45Nb)-4Ga, 92(Ti–45Nb)-8Ga (wt.%)) on corrosion and passive film properties, as well as cytocompatibility and antibacterial activity. The electrochemical properties were evaluated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analyses in phosphate-buffered saline (PBS). X-ray photoelectron spectroscopy (XPS) was performed to analyze the chemical composition of passive films. Early adhesion and viability of macrophages and Staphylococcus aureus were assessed by nucleocounting and colony-forming unit counting, respectively. The results showed that high corrosion resistance and passive film properties of Ti–45Nb are retained and even slightly improved with Ga. EIS results revealed that Ga addition improves the passive film resistance. XPS measurements of 92(Ti–45Nb)-8Ga show that the passive film contains Ti-, Nb- and Ga-based oxides, implying the formation of mixed (Ti–Nb-Ga) oxides. In addition, marginal Ga ion release rate was detected under free corrosion conditions. Therefore, it can be assumed that Ga species may contribute to passive film formation on Ga-containing alloys. The 92(Ti–45Nb)-8Ga elicited an antibacterial effect against S. aureus compared to cp-Ti at 4 h. Moreover, Ga-containing alloys showed good cytocompatibility with THP-1 macrophages at 24 h. In conclusion, it was demonstrated that Ga additions to Ti–45Nb are beneficial to corrosion resistance and showed promising initial host and bacterial interactions.

Loading...
Thumbnail Image
Item

Tm3+-doped calcium lithium tantalum gallium garnet (Tm:CLTGG): novel laser crystal

2021, Alles, Adrian, Pan, Zhongben, Loiko, Pavel, Serres, Josep Maria, Slimi, Sami, Yingming, Shawuti, Tang, Kaiyang, Wang, Yicheng, Zhao, Yongguang, Dunina, Elena, Kornienko, Alexey, Camy, Patrice, Chen, Weidong, Wang, Li, Griebner, Uwe, Petrov, Valentin, Solé, Rosa Maria, Aguiló, Magdalena, Díaz, Francesc, Mateos, Xavier

We report on the development of a novel laser crystal with broadband emission properties at ∼2 µm – a Tm3+,Li+-codoped calcium tantalum gallium garnet (Tm:CLTGG). The crystal is grown by the Czochralski method. Its structure (cubic, sp. gr. 𝐼𝑎3¯𝑑, a = 12.5158(0) Å) is refined by the Rietveld method. Tm:CLTGG exhibits a relatively high thermal conductivity of 4.33 Wm-1K-1. Raman spectroscopy confirms a weak concentration of vacancies due to the charge compensation provided by Li+ codoping. The transition probabilities of Tm3+ ions are determined using the modified Judd-Ofelt theory yielding the intensity parameters Ω2 = 5.185, Ω4 = 0.650, Ω6 = 1.068 [10−20 cm2] and α = 0.171 [10−4 cm]. The crystal-field splitting of the Tm3+ multiplets is revealed at 10 K. The first diode-pumped Tm:CLTGG laser generates 1.08 W at ∼2 µm with a slope efficiency of 23.8%. The Tm3+ ions in CLTGG exhibit significant inhomogeneous spectral broadening due to the structure disorder (a random distribution of Ta5+ and Ga3+ cations over octahedral and tetrahedral lattice sites) leading to smooth and broad gain profiles (bandwidth: 130 nm) extending well above 2 µm and rendering Tm:CLTGG suitable for femtosecond pulse generation.