Search Results

Now showing 1 - 8 of 8
  • Item
    Spectral Theory of Infinite Quantum Graphs
    (Cham (ZG) : Springer International Publishing AG, 2018) Exner, Pavel; Kostenko, Aleksey; Malamud, Mark; Neidhardt, Hagen
    We investigate quantum graphs with infinitely many vertices and edges without the common restriction on the geometry of the underlying metric graph that there is a positive lower bound on the lengths of its edges. Our central result is a close connection between spectral properties of a quantum graph and the corresponding properties of a certain weighted discrete Laplacian on the underlying discrete graph. Using this connection together with spectral theory of (unbounded) discrete Laplacians on infinite graphs, we prove a number of new results on spectral properties of quantum graphs. Namely, we prove several self-adjointness results including a Gaffney-type theorem. We investigate the problem of lower semiboundedness, prove several spectral estimates (bounds for the bottom of spectra and essential spectra of quantum graphs, CLR-type estimates) and study spectral types.
  • Item
    Global spatial regularity for elasticity models with cracks, contact and other nonsmooth constraints
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Knees, Dorothee; Schröder, Andreas
    A global higher differentiability result in Besov spaces is proved for the displacement fields of linear elastic models with self contact. Domains with cracks are studied, where nonpenetration conditions/Signorini conditions are imposed on the crack faces. It is shown that in a neighborhood of crack tips (in 2D) or crack fronts (3D) the displacement fields are B 3/2 2,∞ regular. The proof relies on a difference quotient argument for the directions tangential to the crack. In order to obtain the regularity estimates also in the normal direction, an argument due to Ebmeyer/Frehse/Kassmann is modified. The methods are then applied to further examples like contact problems with nonsmooth rigid foundations, to a model with Tresca friction and to minimization problems with nonsmooth energies and constraints as they occur for instance in the modeling of shape memory alloys. Based on Falk's approximation Theorem for variational inequalities, convergence rates for FE-discretizations of contact problems are derived relying on the proven regularity properties. Several numerical examples illustrate the theoretical results.
  • Item
    A gradient-robust well-balanced scheme for the compressible isothermal Stokes problem
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Akbas, Mine; Gallouët, Thierry; Gaßmann, Almut; Linke, Alexander; Merdon, Christian
    A novel notion for constructing a well-balanced scheme --- a gradient-robust scheme --- is introduced and a showcase application for a steady compressible, isothermal Stokes equations is presented. Gradient-robustness means that arbitrary gradient fields in the momentum balance are well-balanced by the discrete pressure gradient --- if there is enough mass in the system to compensate the force. The scheme is asymptotic-preserving in the sense that it degenerates for low Mach numbers to a recent inf-sup stable and pressure-robust discretization for the incompressible Stokes equations. The convergence of the coupled FEM-FVM scheme for the nonlinear, isothermal Stokes equations is proved by compactness arguments. Numerical examples illustrate the numerical analysis, and show that the novel approach can lead to a dramatically increased accuracy in nearly-hydrostatic low Mach number flows. Numerical examples also suggest that a straight-forward extension to barotropic situations with nonlinear equations of state is feasible.
  • Item
    Convergence of an implicit Voronoi finite volume method for reaction-diffusion problems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Fiebach, André; Glitzky, Annegret; Linke, Alexander
    We investigate the convergence of an implicit Voronoi finite volume method for reaction- diffusion problems including nonlinear diffusion in two space dimensions. The model allows to handle heterogeneous materials and uses the chemical potentials of the involved species as primary variables. The numerical scheme uses boundary conforming Delaunay meshes and preserves positivity and the dissipative property of the continuous system. Starting from a result on the global stability of the scheme (uniform, mesh-independent global upper and lower bounds), we prove strong convergence of the chemical activities and their gradients to a weak solution of the continuous problem. In order to illustrate the preservation of qualitative properties by the numerical scheme, we present a long-term simulation of the Michaelis-Menten-Henri system. Especially, we investigate the decay properties of the relative free energy and the evolution of the dissipation rate over several magnitudes of time, and obtain experimental orders of convergence for these quantities.
  • Item
    On the convergence of adaptive stochastic collocation for elliptic partial differential equations with affine diffusion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Eigel, Martin; Ernst, Oliver; Sprungk, Björn; Tamellini, Lorenzo
    Convergence of an adaptive collocation method for the stationary parametric diffusion equation with finite-dimensional affine coefficient is shown. The adaptive algorithm relies on a recently introduced residual-based reliable a posteriori error estimator. For the convergence proof, a strategy recently used for a stochastic Galerkin method with an hierarchical error estimator is transferred to the collocation setting.
  • Item
    Quasistatic small-strain plasticity in the limit of vanishing hardening and its numerical approximation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Bartels, Sören; Mielke, Alexander; Roubíček, Thomáš
    The quasistatic rate-independent evolution of the Prager--Ziegler-type model of linearized plasticity with hardening is shown to converge to the rate-independent evolution of the Prandtl--Reuss elastic/perfectly plastic model. Based on the concept of energetic solutions we study the convergence of the solutions in the limit for hardening coefficients converging to 0 by using the abstract method of Gamma-convergence for rate-independent systems. An unconditionally convergent numerical scheme is devised and 2D and 3D numerical experiments are presented. A two-sided energy inequality is a posteriori verified to document experimental convergence rates.
  • Item
    Reliable averaging for the primal variable in the Courant FEM and hierarchical error estimators on red-refined meshes
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Carstensen, Carsten; Eigel, Martin
    A hierarchical a posteriori error estimator for the first-order finite element method (FEM) on a red-refined triangular mesh is presented for the 2D Poisson model problem. Reliability and efficiency with some explicit constant is proved for triangulations with inner angles smaller than or equal to π/2 . The error estimator does not rely on any saturation assumption and is valid even in the pre-asymptotic regime on arbitrarily coarse meshes. The evaluation of the estimator is a simple post-processing of the piecewise linear FEM without any extra solve plus a higher-order approximation term. The results also allows the striking observation that arbitrary local averaging of the primal variable leads to a reliable and efficient error estimation. Several numerical experiments illustrate the performance of the proposed a posteriori error estimator for computational benchmarks.
  • Item
    Weighted energy-dissipation functionals for gradient flows
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Mielke, Alexander; Stefanelli, Ulisse
    We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke & Ortiz in ``A class of minimum principles for characterizing the trajectories of dissipative systems''. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization. Applications of the theory to various classes of parabolic PDE problems are presented. In particular, we focus on two examples of microstructure evolution from S. Conti and M. Ortiz ``Minimum principles for the trajectories of systems governed by rate problems'