Search Results

Now showing 1 - 10 of 10
Loading...
Thumbnail Image
Item

Chirped photonic crystal for spatially filtered optical feedback to a broad-area laser

2018, Brée, Carsten, Gailevicius, Darius, Purlys, Vytautas, Werner, Guillermo Garre, Staliunas, Kestutis, Rathsfeld, Andreas, Schmidt, Gunther, Radziunas, Mindaugas

We derive and analyze an efficient model for reinjection of spatially filtered optical feedback from an external resonator to a broad area, edge emitting semiconductor laser diode. Spatial filtering is achieved by a chirped photonic crystal, with variable periodicity along the optical axis and negligible resonant backscattering. The optimal chirp is obtained from a genetic algorithm, which yields solutions that are robust against perturbations. Extensive numerical simulations of the composite system with our optoelectronic solver indicate that spatially filtered reinjection enhances lower-order transversal optical modes in the laser diode and, consequently, improves the spatial beam quality.

Loading...
Thumbnail Image
Item

Narrowing of the far field in spatially modulated edge-emitting broad area semiconductor amplifiers

2015, Radziunas, Mindaugas, Herrero, Ramon, Botey, Muriel, Staliunas, Kestutis

We perform a detailed theoretical analysis of the far field narrowing in broad-area edgeemitting semiconductor amplifiers that are electrically injected through the contacts periodically modulated in both, longitudinal and transverse, directions. The beam propagation properties within the semiconductor amplifier are explored by a (1+2)-dimensional traveling wave model and its coupled mode approximation. Assuming a weak field regime, we analyze the impact of different parameters and modulation geometry on the narrowing of the principal far field component.

Loading...
Thumbnail Image
Item

Inverse scattering of electromagnetic waves by multilayered structures : uniqueness in TM mode

2010, Elschner, Johannes, Hu, Guanghui

Assume a time-harmonic electromagnetic wave is scattered by an infinitely long cylindrical conductor surrounded by an unknown piecewise homogenous medium remaining invariant along the cylinder axis. We prove that, in TM mode, the far field patterns for all observation directions at a fixed frequency uniquely determine the unknown surrounding medium as well as the shape of the cylindrical conductor. A similar uniqueness result is obtained for the scattering by multilayered penetrable periodic structures in a piecewise homogenous medium. The periodic interfaces and refractive indices can be uniquely identified from the near field data measured only above (or below) the structure for all quasi-periodic incident waves with a fixed phase-shift. The proofs are based on the singularity of the Green function to a two dimensional elliptic equation with piecewise constant leading coefficients

Loading...
Thumbnail Image
Item

Finite element method to fluid-solid interaction problems with unbounded periodic interfaces

2014, Hu, Guanghui, Rathsfeld, Andreas, Yin, Tao

Consider a time-harmonic acoustic plane wave incident onto a doubly periodic (biperiodic) surface from above. The medium above the surface is supposed to be filled with a homogeneous compressible inviscid fluid of constant mass density, whereas the region below is occupied by an isotropic and linearly elastic solid body characterized by its Lamé constants. This paper is concerned with a variational approach to the fluid-solid interaction problems with unbounded biperiodic Lipschitz interfaces between the domains of the acoustic and elastic waves. The existence of quasi-periodic solutions in Sobolev spaces is established at arbitrary frequency of incidence, while uniqueness is proved only for small frequencies or for all frequencies excluding a discrete set. A finite element scheme coupled with Dirichlet-to-Neumann mappings is proposed. The Dirichlet-to-Neumann mappings are approximated by truncated Rayleigh series expansions, and, finally, numerical tests in 2D are performed.

Loading...
Thumbnail Image
Item

Conical diffraction by multilayer gratings : a recursive integral equations approach

2011, Schmidt, Gunther

In this paper we consider an integral equation algorithm to study the scattering of plane waves by multilayer diffraction gratings under oblique incidence. The scattering problem is described by a system of Helmholtz equations with piecewise constant coefficients in $R^2$ coupled by special transmission conditions at the interfaces between different layers. Boundary integral methods lead to a system of singular integral equations, containing at least two equations for each interface. To deal with an arbitrary number of material layers we present the extension of a recursive procedure developed by Maystre for normal incidence, which transforms the problem to a sequence of equations with $2 times 2$ operator matrices on each interface. Necessary and sufficient conditions for the applicability of the algorithm are derived.

Loading...
Thumbnail Image
Item

Scattering of general incident beams by diffraction gratings

2016, Schmidt, Gunther

The paper is devoted to the electromagnetic scattering of arbitrary time-harmonic fields by periodic structures. The Floquet-Fourier transform converts the full space Maxwell problem to a twoparameter family of diffraction problems with quasiperiodic incidence waves, for which conventional grating methods become applicable. The inverse transform is given by integrating with respect to the parameters over a infinite strip in R2. For the computation of the scattered fields we propose an algorithm, which extends known adaptive methods for the approximate calculation of multiple integrals. The novel adaptive approach provides autonomously the expansion of the incident field into quasiperiodic waves in order to approximate the scattered fields within a prescribed error tolerance. Some application examples are numerically examined.

Loading...
Thumbnail Image
Item

Solving conical diffraction with integral equations

2009, Goray, Leonid I., Schmidt, Gunther

Off-plane scattering of time-harmonic plane waves by a diffraction grating with arbitrary conductivity and general border profile is considered in a rigorous electromagnetic formulation. The integral equations for conical diffraction were obtained using the boundary integrals of the single and double layer potentials including the tangential derivative of single layer potentials interpreted as singular integrals. We derive an important formula for the calculation of the absorption in conical diffraction. Some rules which are expedient for the numerical implementation of the theory are presented. The efficiencies and polarization angles compared with those obtained by Lifeng Li for transmission and reflection gratings are in a good agreement. The code developed and tested is found to be accurate and efficient for solving off-plane diffraction problems including high-conductive surfaces, borders with edges, real border profiles, and gratings working at short wavelengths.

Loading...
Thumbnail Image
Item

Integral methods for conical diffraction

2009, Schmidt, Gunther

The paper is devoted to the scattering of a plane wave obliquely illuminating a periodic surface. Integral equation methods lead to a system of singular integral equations over the profile. Using boundary integral techniques we study the equivalence of these equations to the electromagnetic formulation, the existence and uniqueness of solutions under general assumptions on the permittivity and permeability of the materials. In particular, new results for materials with negative permittivity or permeability are established.

Loading...
Thumbnail Image
Item

Fast numerical methods for waves in periodic media

2009, Ehrhardt, Matthias, Zheng, Chunxiong

Periodic media problems widely exist in many modern application areas like semiconductor nanostructures (e.g. quantum dots and nanocrystals), semi-conductor superlattices, photonic crystals (PC) structures, meta materials or Bragg gratings of surface plasmon polariton (SPP) waveguides, etc. Often these application problems are modeled by partial differential equations with periodic coefficients and/or periodic geometries. In order to numerically solve these periodic structure problems efficiently one usually confines the spatial domain to a bounded computational domain (i.e. in a neighborhood of the region of physical interest). Hereby, the usual strategy is to introduce so-called artificial boundaries and impose suitable boundary conditions. For wave-like equations, the ideal boundary conditions should not only lead to w ell-posed problems, but also mimic the perfect absorption of waves traveling out of the computational domain through the artificial boundaries ...

Loading...
Thumbnail Image
Item

Integral equations for conical diffraction by coated gratings

2008, Schmidt, Gunther

The paper is devoted to integral formulations for the scattering of plane waves by diffraction gratings under oblique incidence. For the case of coated gratings Maxwell's equations can be reduced to a system of four singular integral equations on the piecewise smooth interfaces between different materials. We study analytic properties of the integral operators for periodic diffraction problems and obtain existence and uniqueness results for solutions of the systems corresponding to electromagnetic fields with locally finite energy.