Search Results

Now showing 1 - 7 of 7
  • Item
    Single molecule level plasmonic catalysis – a dilution study of p-nitrothiophenol on gold dimers
    (Cambridge : Soc., 2015) Zhang, Zhenglong; Deckert-Gaudig, Tanja; Singh, Pushkar; Deckert, Volker
    Surface plasmons on isolated gold dimers can initiate intermolecular reactions of adsorbed p-nitrothiophenol. At the single molecule level when dimerization is not possible an intramolecular reaction can be observed. Experimental evidence indicates that plasmon-induced hot electrons provide the required activation energy.
  • Item
    Charged domains in ferroelectric, polycrystalline yttrium manganite thin films resolved with scanning electron microscopy
    (Bristol : IOP Publ., 2020) Rayapati, Venkata Rao; Bürger, Danilo; Du, Nan; Kowol, Cornelia; Blaschke, Daniel; Stöcker, Hartmut; Matthes, Patrick; Patra, Rajkumar; Skorupa, Ilona; Schulz, Stefan E.; Schmidt, Heidemarie
    We have investigated ferroelectric charged domains in polycrystalline hexagonal yttrium manganite thin films (Y1Mn1O3, Y0.95Mn1.05O3, Y1Mn0.99Ti0.01O3, and Y0.94Mn1.05Ti0.01O3) by scanning electron microscopy (SEM) in secondary electron emission mode with a small acceleration voltage. Using SEM at an acceleration voltage of 1.0 kV otherwise homogenous surface charging effects are reduced, polarization charges can be observed and polarization directions (±Pz) of the ferroelectric domains in the polycrystalline thin films can be identified. Thin films of different chemical composition have been deposited by pulsed laser deposition on Pt/SiO2/Si structures under otherwise same growth conditions. Using SEM it has been shown that different charged domain density networks are existing in polycrystalline yttrium manganite thin films. © 2020 IOP Publishing Ltd.
  • Item
    On the stability of microwave-fabricated SERS substrates - chemical and morphological considerations
    (Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2021) Wang, Limin; Womiloju, Aisha Adebola; Höppener, Christiane; Schubert, Ulrich Sigmar; Hoeppener, Stephanie
    The stability of surface-enhanced Raman spectroscopy (SERS) substrates in different organic solvents and different buffer solutions was investigated. SERS substrates were fabricated by a microwave-assisted synthesis approach and the morphological as well as chemical changes of the SERS substrates were studied. It was demonstrated that the SERS substrates treated with methanol, ethanol, or N,N-dimethylformamide (DMF) were comparable and showed overall good stability and did not show severe morphological changes or a strong decrease in their Raman activity. Toluene treatment resulted in a strong decrease in the Raman activity whereas dimethyl sulfoxide (DMSO) treatment completely preserved or even slightly improved the Raman enhancement capabilities. SERS substrates immersed into phosphate-buffered saline (PBS) solutions were observed to be rather instable in low and neutral pH buffer solutions. Other buffer systems showed less severe influences on the SERS activity of the substrates and a carbonate buffer at pH 10 was found to even improve SERS performance. This study represents a guideline on the stability of microwave-fabricated SERS substrates or other SERS substrates consisting of non-stabilized silver nanoparticles for the application of different organic solvents and buffer solutions.
  • Item
    Liver Dysfunction and Phosphatidylinositol-3-Kinase Signalling in Early Sepsis: Experimental Studies in Rodent Models of Peritonitis
    (San Francisco, CA : Public Library of Science, 2012) Recknagel, P.; Gonnert, F.A.; Westermann, M.; Lambeck, S.; Lupp, A.; Rudiger, A.; Dyson, A.; Carré, J.E.; Kortgen, A.; Krafft, C.; Popp, J.; Sponholz, C.; Fuhrmann, V.; Hilger, I.; Claus, R.A.; Riedemann, N.C.; Wetzker, R.; Singer, M.; Trauner, M.; Bauer, M.
    Background: Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings: In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions: Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary.
  • Item
    simpleISM—A straight forward guide to upgrade from confocal to ISM
    (San Francisco, California, US : PLOS, 2022) Goswami, Monalisa; Lachmann, René; Kretschmer, Robert; Heintzmann, Rainer
    Resolution in a confocal laser scanning microscopes (CLSM) can be improved if the pinhole is closed. But closing the pinhole will deteriorate the signal to noise ratio (SNR). A simple technique to improve the SNR while keeping the resolution same by upgrading the system to an image scanning microscope. In this paper, we explain in detail, based on an Olympus Fluoview 300 system, how a scanning microscope can be upgraded into an image scanning microscope (ISM) using a simple camera-based detector and an Arduino Due providing a galvo driving and camera synchronization signals. We could confirm a resolution improvement as well as superconcentration and made the interesting observation of a reduced influence of laser fluctuations.
  • Item
    Microstructured optical fiber sensors embedded in a laminate composite for smart material applications
    (Basel : MDPI AG, 2011) Sonnenfeld, C.; Sulejmani, S.; Geernaert, T.; Eve, S.; Lammens, N.; Luyckx, G.; Voet, E.; Degrieck, J.; Urbanczyk, W.; Mergo, P.; Becker, M.; Bartelt, H.; Berghmans, F.; Thienpont, H.
    Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures.
  • Item
    Label-free detection of Phytophthora ramorum using surface-enhanced Raman spectroscopy
    (Cambridge : Soc., 2015) Yüksel, Sezin; Schwenkbier, Lydia; Pollok, Sibyll; Weber, Karina; Cialla-May, Dana; Popp, Jürgen
    In this study, we report on a novel approach for the label-free and species-specific detection of the plant pathogen Phytophthora ramorum from real samples using surface enhanced Raman scattering (SERS). In this context, we consider the entire analysis chain including sample preparation, DNA isolation, amplification and hybridization on SERS substrate-immobilized adenine-free capture probes. Thus, the SERS-based detection of target DNA is verified by the strong spectral feature of adenine which indicates the presence of hybridized target DNA. This property was realized by replacing adenine moieties in the species-specific capture probes with 2-aminopurine. In the case of the matching capture and target sequence, the characteristic adenine peak serves as an indicator for specific DNA hybridization. Altogether, this is the first assay demonstrating the detection of a plant pathogen from an infected plant material by label-free SERS employing DNA hybridization on planar SERS substrates consisting of silver nanoparticles.