On the Impact of Temporal Representations on Metaphor Detection

Thumbnail Image
Series Titel
Book Title
Paris : European Language Resources Association (ELRA)
Link to publishers version

State-of-the-art approaches for metaphor detection compare their literal - or core - meaning and their contextual meaning using metaphor classifiers based on neural networks. However, metaphorical expressions evolve over time due to various reasons, such as cultural and societal impact. Metaphorical expressions are known to co-evolve with language and literal word meanings, and even drive, to some extent, this evolution. This poses the question of whether different, possibly time-specific, representations of literal meanings may impact the metaphor detection task. To the best of our knowledge, this is the first study that examines the metaphor detection task with a detailed exploratory analysis where different temporal and static word embeddings are used to account for different representations of literal meanings. Our experimental analysis is based on three popular benchmarks used for metaphor detection and word embeddings extracted from different corpora and temporally aligned using different state-of-the-art approaches. The results suggest that the usage of different static word embedding methods does impact the metaphor detection task and some temporal word embeddings slightly outperform static methods. However, the results also suggest that temporal word embeddings may provide representations of the core meaning of the metaphor even too close to their contextual meaning, thus confusing the classifier. Overall, the interaction between temporal language evolution and metaphor detection appears tiny in the benchmark datasets used in our experiments. This suggests that future work for the computational analysis of this important linguistic phenomenon should first start by creating a new dataset where this interaction is better represented.

Metaphor Detection, Temporal Word Embeddings, Static Word Embedding, Konferenzschrift
Giorgio Ottolina, Matteo Palmonari, Manuel Vimercati, & Mehwish Alam. (2022). On the Impact of Temporal Representations on Metaphor Detection (N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri, T. Declerck, et al., eds.). Paris : European Language Resources Association (ELRA).
CC BY-NC 4.0 Unported