The 3D transient semiconductor equations with gradient-dependent and interfacial recombination
Loading...
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract
We establish the well-posedness of the transient van Roosbroeck system in three space dimensions under realistic assumptions on the data: non-smooth domains, discontinuous coefficient functions and mixed boundary conditions. Moreover, within this analysis, recombination terms may be concentrated on surfaces and interfaces and may not only depend on chargecarrier densities, but also on the electric field and currents. In particular, this includes Avalanche recombination. The proofs are based on recent abstract results on maximal parabolic and optimal elliptic regularity of divergence-form operators.
Description
Keywords
Van Roosbroeck’s system, semiconductor device, Avalanche recombination, surface recombination, nonlinear parabolic system, heterogeneous material, discontinuous coefficients and data, mixed boundary conditions
Citation
Citation
Disser, K., & Rehberg, J. (2018). The 3D transient semiconductor equations with gradient-dependent and
interfacial recombination (Version publishedVersion, Vol. 2507). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik. https://doi.org//10.20347/WIAS.PREPRINT.2507