A rigidity result for nonlocal semilinear equations

Loading...
Thumbnail Image
Date
2014
Journal Title
Journal ISSN
Volume Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Abstract

We consider a possibly anisotropic integro-differential semilinear equation, run by a nondecreasing and nontrivial nonlinearity. We prove that if the solution grows at infinity less than the order of the operator, then it must be constant.

Description
Keywords
Nonlocal integro-differential semilinear equations, Liouville-type theorems, nondecreasing nonlinearities
Citation
Citation
Farina, A., & Farina, A. (2014). A rigidity result for nonlocal semilinear equations (Version publishedVersion, Vol. 1984). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Collections