A vanishing diffusion limit in a nonstandard system of phase field equations

Loading...
Thumbnail Image
Date
2012
Volume
1758
Issue
Journal
Series Titel
Book Title
Publisher
Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik
Link to publishers version
Abstract

We are concerned with a nonstandard phase field model of CahnHilliard type. The model, which was introduced by Podio-Guidugli (Ric. Mat. 2006), describes two-species phase segregation and consists of a system of two highly nonlinearly coupled PDEs. It has been recently investigated by Colli, Gilardi, Podio-Guidugli, and Sprekels in a series of papers: see, in particular, SIAM J. Appl. Math. 2011, and Boll. Unione Mat. Ital. 2012. In the latter contribution, the authors can treat the very general case in which the diffusivity coefficient of the parabolic PDE is allowed to depend nonlinearly on both variables. In the same framework, this paper investigates the asymptotic limit of the solutions to the initial-boundary value problems as the diffusion coefficient ơ in the equation governing the evolution of the order parameter tends to zero. We prove that such a limit actually exists and solves the limit problem, which couples a nonlinear PDE of parabolic type with an ODE accounting for the phase dynamics. In the case of a constant diffusivity, we are able to show uniqueness and to improve the regularity of the solution.

Description
Keywords
Nonstandard phase field system, nonlinear partial differential equations, asymptotic limit, convergence of solutions
Citation
Colli, P., Gilardi, G., Krejci, P., & Sprekels, J. (2012). A vanishing diffusion limit in a nonstandard system of phase field equations (Vol. 1758). Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik.
Collections
License
This document may be downloaded, read, stored and printed for your own use within the limits of § 53 UrhG but it may not be distributed via the internet or passed on to external parties.
Dieses Dokument darf im Rahmen von § 53 UrhG zum eigenen Gebrauch kostenfrei heruntergeladen, gelesen, gespeichert und ausgedruckt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.