Please use this identifier to cite or link to this item: https://oa.tib.eu/renate/handle/123456789/547
Files in This Item:
File SizeFormat 
bg-11-6357-2014.pdf3,04 MBAdobe PDFView/Open
Title: Impact of droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation models
Authors: Van Oijen, M.Balkovi, J.Beer, C.Cameron, D.R.Ciais, P.Cramer, W.Kato, T.Kuhnert, M.Martin, R.Myneni, R.Rammig, A.Rolinski, S.Soussana, J.-F.Thonicke, K.Van der Velde, M.Xu, L.
Publishers version: https://doi.org/10.5194/bg-11-6357-2014
URI: https://doi.org/10.34657/1022
https://oa.tib.eu/renate/handle/123456789/547
Issue Date: 2014
Published in: Biogeosciences, Volume 11, Issue 22, Page 6357-6375
Journal: Biogeosciences
Volume: 11
Issue: 22
Page Start: 6357
Page End: 6375
Publisher: München : European Geopyhsical Union
Abstract: We analyse how climate change may alter risks posed by droughts to carbon fluxes in European ecosystems. The approach follows a recently proposed framework for risk analysis based on probability theory. In this approach, risk is quantified as the product of hazard probability and ecosystem vulnerability. The probability of a drought hazard is calculated here from the Standardized Precipitation–Evapotranspiration Index (SPEI). Vulnerability is calculated from the response to drought simulated by process-based vegetation models. We use six different models: three for generic vegetation (JSBACH, LPJmL, ORCHIDEE) and three for specific ecosystems (Scots pine forests: BASFOR; winter wheat fields: EPIC; grasslands: PASIM). The periods 1971–2000 and 2071–2100 are compared. Climate data are based on gridded observations and on output from the regional climate model REMO using the SRES A1B scenario. The risk analysis is carried out for ~ 18 000 grid cells of 0.25 × 0.25° across Europe. For each grid cell, drought vulnerability and risk are quantified for five seasonal variables: net primary and ecosystem productivity (NPP, NEP), heterotrophic respiration (Rh), soil water content and evapotranspiration. In this analysis, climate change leads to increased drought risks for net primary productivity in the Mediterranean area: five of the models estimate that risk will exceed 15%. The risks increase mainly because of greater drought probability; ecosystem vulnerability will increase to a lesser extent. Because NPP will be affected more than Rh, future carbon sequestration (NEP) will also be at risk predominantly in southern Europe, with risks exceeding 0.25 g C m−2 d−1 according to most models, amounting to reductions in carbon sequestration of 20 to 80%.
Keywords: carbon cycle; carbon flux; carbon sequestration; climate change; drought; drought stress; net ecosystem production; probabilityrisk assessment; vegetation cover; vulnerability
Type: article; Text
Publishing status: publishedVersion
DDC: 550
License: CC BY 3.0 Unported
Link to license: https://creativecommons.org/licenses/by/3.0/
Appears in Collections:Geowissenschaften

Show full item record
Van Oijen, M., J. Balkovi, C. Beer, D.R. Cameron, P. Ciais, W. Cramer, T. Kato, M. Kuhnert, R. Martin, R. Myneni, A. Rammig, S. Rolinski, J.-F. Soussana, K. Thonicke, M. Van der Velde and L. Xu, 2014. Impact of droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation models. 2014. München : European Geopyhsical Union
Van Oijen, M., Balkovi, J., Beer, C., Cameron, D. R., Ciais, P., Cramer, W., Kato, T., Kuhnert, M., Martin, R., Myneni, R., Rammig, A., Rolinski, S., Soussana, J.-F., Thonicke, K., Van der Velde, M. and Xu, L. (2014) “Impact of droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation models.” München : European Geopyhsical Union. doi: https://doi.org/10.5194/bg-11-6357-2014.
Van Oijen M, Balkovi J, Beer C, Cameron D R, Ciais P, Cramer W, Kato T, Kuhnert M, Martin R, Myneni R, Rammig A, Rolinski S, Soussana J-F, Thonicke K, Van der Velde M, Xu L. Impact of droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation models. Vol. 11. München : European Geopyhsical Union; 2014.
Van Oijen, M., Balkovi, J., Beer, C., Cameron, D. R., Ciais, P., Cramer, W., Kato, T., Kuhnert, M., Martin, R., Myneni, R., Rammig, A., Rolinski, S., Soussana, J.-F., Thonicke, K., Van der Velde, M., & Xu, L. (2014). Impact of droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation models (Version publishedVersion, Vol. 11). Version publishedVersion, Vol. 11. München : European Geopyhsical Union. https://doi.org/https://doi.org/10.5194/bg-11-6357-2014
Van Oijen M, Balkovi J, Beer C, Cameron D R, Ciais P, Cramer W, Kato T, Kuhnert M, Martin R, Myneni R, Rammig A, Rolinski S, Soussana J-F, Thonicke K, Van der Velde M, Xu L. Impact of droughts on the carbon cycle in European vegetation: A probabilistic risk analysis using six vegetation models. 2014;11(22). doi:https://doi.org/10.5194/bg-11-6357-2014


This item is licensed under a Creative Commons License Creative Commons