SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs

Thumbnail Image
Series Titel
Book Title
New York City, NY : Association for Computing Machinery

In recent years, the amount of data has increased exponentially, and knowledge graphs have gained attention as data structures to integrate data and knowledge harvested from myriad data sources. However, data complexity issues like large volume, high-duplicate rate, and heterogeneity usually characterize these data sources, being required data management tools able to address the negative impact of these issues on the knowledge graph creation process. In this paper, we propose the SDM-RDFizer, an interpreter of the RDF Mapping Language (RML), to transform raw data in various formats into an RDF knowledge graph. SDM-RDFizer implements novel algorithms to execute the logical operators between mappings in RML, allowing thus to scale up to complex scenarios where data is not only broad but has a high-duplication rate. We empirically evaluate the SDM-RDFizer performance against diverse testbeds with diverse configurations of data volume, duplicates, and heterogeneity. The observed results indicate that SDM-RDFizer is two orders of magnitude faster than state of the art, thus, meaning that SDM-RDFizer an interoperable and scalable solution for knowledge graph creation. SDM-RDFizer is publicly available as a resource through a Github repository and a DOI.

Knowledge Graph, RDF, RML
Iglesias, E., Jozashoori, S., Chaves-Fraga, D., Collarana, D., & Vidal, M.-E. (2020). SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs. New York City, NY : Association for Computing Machinery.
Es gilt deutsches Urheberrecht. Das Dokument darf zum eigenen Gebrauch kostenfrei genutzt, aber nicht im Internet bereitgestellt oder an Außenstehende weitergegeben werden.