Structure of Ni(OH)2 intermediates determines the efficiency of NiO-based photocathodes – a case study using novel mesoporous NiO nanostars

Abstract

We report the wet chemical synthesis of mesoporous NiO nanostars (NS) as photocathode material for dye-sensitized solar cells (DSSCs). The growth mechanism of NiO NS as a new morphology of NiO is assessed by TEM and spectroscopic investigations. The NiO NS are obtained upon annealing of preformed β-Ni(OH)2 into pristine NiO with low defect concentrations and favorable electronic configuration for dye sensitization. The NiO NS consist of fibers self-assembled from nanoparticles yielding a specific surface area of 44.9 m2 g-1. They possess a band gap of 3.83 eV and can be sensitized by molecular photosensitizers bearing a range of anchoring groups, e.g. carboxylic acid, phosphonic acid, and pyridine. The performance of NiO NS-based photocathodes in photoelectrochemical application is compared to that of other NiO morphologies, i.e. nanoparticles and nanoflakes, under identical conditions. Sensitization of NiO NS with the benchmark organic dye P1 leads to p-DSSCs with a high photocurrent up to 3.91 mA cm-2 whilst the photoelectrochemical activity of the NiO NS photocathode in aqueous medium in the presence of an irreversible electron acceptor is reflected by generation of a photocurrent up to 23 μA cm-2 © 2019 The Royal Society of Chemistry.

Description
Keywords
Dye-sensitized solar cells, Energy gap, Field emission cathodes, Morphology, Nanoparticles, Photocathodes, Photosensitizers, Defect concentrations, Dye sensitization, Electronic configuration, Identical conditions, Photoelectrochemical applications, Photoelectrochemicals, Spectroscopic investigations, Wet chemical synthesis, Nickel oxide
Citation
Wahyuono, R. A., Dellith, A., Schmidt, C., Dellith, J., Ignaszak, A., Seyring, M., et al. (2019). Structure of Ni(OH)2 intermediates determines the efficiency of NiO-based photocathodes – a case study using novel mesoporous NiO nanostars. 9(67). https://doi.org//10.1039/c9ra08785k
Collections
License
CC BY-NC 3.0 Unported