Key concepts behind forming-free resistive switching incorporated with rectifying transport properties

Loading...
Thumbnail Image
Date
2013
Volume
3
Issue
Journal
Scientific Reports
Series Titel
Book Title
Publisher
London : Nature Publishing Group
Link to publishers version
Abstract

This work reports the effect of Ti diffusion on the bipolar resistive switching in Au/BiFeO 3/Pt/Ti capacitor-like structures. Polycrystalline BiFeO 3 thin films are deposited by pulsed laser deposition at different temperatures on Pt/Ti/SiO 2/Si substrates. From the energy filtered transmission electron microscopy and Rutherford backscattering spectrometry it is observed that Ti diffusion occurs if the deposition temperature is above 600 C. The current-voltage (I-V) curves indicate that resistive switching can only be achieved in Au/BiFeO 3/Pt/Ti capacitor-like structures where this Ti diffusion occurs. The effect of Ti diffusion is confirmed by the BiFeO 3 thin films deposited on Pt/sapphire and Pt/Ti/sapphire substrates. The resistive switching needs no electroforming process, and is incorporated with rectifying properties which is potentially useful to suppress the sneak current in a crossbar architecture. Those specific features open a promising alternative concept for nonvolatile memory devices as well as for other memristive devices like synapses in neuromorphic circuits.

Description
Keywords
License
CC BY-NC-SA 3.0 Unported