Numerical upscaling of parametric microstructures in a possibilistic uncertainty framework with tensor trains

dc.bibliographicCitation.date2023
dc.bibliographicCitation.firstPage615
dc.bibliographicCitation.journalTitleComputational Mechanicseng
dc.bibliographicCitation.lastPage636
dc.bibliographicCitation.volume71
dc.contributor.authorEigel, Martin
dc.contributor.authorGruhlke, Robert
dc.contributor.authorMoser, Dieter
dc.contributor.authorGrasedyck, Lars
dc.date.accessioned2023-04-04T08:15:23Z
dc.date.available2023-04-04T08:15:23Z
dc.date.issued2022
dc.description.abstractA fuzzy arithmetic framework for the efficient possibilistic propagation of shape uncertainties based on a novel fuzzy edge detection method is introduced. The shape uncertainties stem from a blurred image that encodes the distribution of two phases in a composite material. The proposed framework employs computational homogenisation to upscale the shape uncertainty to a effective material with fuzzy material properties. For this, many samples of a linear elasticity problem have to be computed, which is significantly sped up by a highly accurate low-rank tensor surrogate. To ensure the continuity of the underlying mapping from shape parametrisation to the upscaled material behaviour, a diffeomorphism is constructed by generating an appropriate family of meshes via transformation of a reference mesh. The shape uncertainty is then propagated to measure the distance of the upscaled material to the isotropic and orthotropic material class. Finally, the fuzzy effective material is used to compute bounds for the average displacement of a non-homogenized material with uncertain star-shaped inclusion shapes.eng
dc.description.versionpublishedVersioneng
dc.identifier.urihttps://oa.tib.eu/renate/handle/123456789/11920
dc.identifier.urihttp://dx.doi.org/10.34657/10953
dc.language.isoeng
dc.publisherHeidelberg : Springer
dc.relation.doihttps://doi.org/10.1007/s00466-022-02261-z
dc.relation.essn1432-0924
dc.relation.issn0178-7675
dc.rights.licenseCC BY 4.0 Unported
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subject.ddc530
dc.subject.ddc004
dc.subject.otherFuzzy partial differential equationseng
dc.subject.otherHomogenisationeng
dc.subject.otherLinear elasticityeng
dc.subject.otherLow-rank tensor formatseng
dc.subject.otherParametric partial differential equationseng
dc.subject.otherPolymorphic uncertainty modelingeng
dc.subject.otherPossibilityeng
dc.subject.otherTensor trainseng
dc.subject.otherUncertainty quantificationeng
dc.titleNumerical upscaling of parametric microstructures in a possibilistic uncertainty framework with tensor trainseng
dc.typeArticleeng
dc.typeTexteng
tib.accessRightsopenAccess
wgl.contributorWIAS
wgl.subjectPhysikger
wgl.subjectInformatikger
wgl.typeZeitschriftenartikelger
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s00466-022-02261-z.pdf
Size:
3.57 MB
Format:
Adobe Portable Document Format
Description:
Collections