Search Results

Now showing 1 - 7 of 7
  • Item
    Gratings for synchrotron and FEL beamlines: a project for the manufacture of ultra-precise gratings at Helmholtz Zentrum Berlin
    (Chester : IUCr, 2018) Siewert, F.; Löchel, B.; Buchheim, J.; Eggenstein, F.; Firsov, A.; Gwalt, G.; Kutz, O.; Lemke, St.; Nelles, B.; Rudolph, I.; Schäfers, F.; Seliger, T.; Senf, F.; Sokolov, A.; Waberski, Ch.; Wolf, J.; Zeschke, T.; Zizak, I.; Follath, R.; Arnold, T.; Frost, F.; Pietag, F.; Erko, A.
    Blazed gratings are of dedicated interest for the monochromatization of synchrotron radiation when a high photon flux is required, such as, for example, in resonant inelastic X-ray scattering experiments or when the use of laminar gratings is excluded due to too high flux densities and expected damage, for example at free-electron laser beamlines. Their availability became a bottleneck since the decommissioning of the grating manufacture facility at Carl Zeiss in Oberkochen. To resolve this situation a new technological laboratory was established at the Helmholtz Zentrum Berlin, including instrumentation from Carl Zeiss. Besides the upgraded ZEISS equipment, an advanced grating production line has been developed, including a new ultra-precise ruling machine, ion etching technology as well as laser interference lithography. While the old ZEISS ruling machine GTM-6 allows ruling for a grating length up to 170 mm, the new GTM-24 will have the capacity for 600 mm (24 inch) gratings with groove densities between 50 lines mm−1 and 1200 lines mm−1. A new ion etching machine with a scanning radiofrequency excited ion beam (HF) source allows gratings to be etched into substrates of up to 500 mm length. For a final at-wavelength characterization, a new reflectometer at a new Optics beamline at the BESSY-II storage ring is under operation. This paper reports on the status of the grating fabrication, the measured quality of fabricated items by ex situ and in situ metrology, and future development goals.
  • Item
    Improvement of the optical properties after surface error correction of aluminium mirror surfaces
    (London : Biomed Central, 2021) Ulitschka, M.; Bauer, J.; Frost, F.; Arnold, T.
    Ion beam finishing techniques of aluminium mirrors have a high potential to meet the increasing demands on applications of high-performance mirror devices for visible and ultraviolet spectral range. Reactively driven ion beam machining using oxygen and nitrogen gases enables the direct figure error correction up to 1 μm machining depth while preserving the initial roughness. However, the periodic turning mark structures, which result from preliminary device shaping by single-point diamond turning, often limit the applicability of mirror surfaces in the short-periodic spectral range. Ion beam planarization with the aid of a sacrificial layer is a promising process route for surface smoothing, resulting in successfully reduction of the turning mark structures. A combination with direct surface smoothing to perform a subsequent improvement of the microroughness is presented with a special focus on roughness evolution, chemical composition, and optical surface properties. As a result, an ion beam based process route is suggested, which allows almost to recover the reflective properties and an increased long-term stability of smoothed aluminium surfaces.
  • Item
    Laser Embossing of Micro-and Submicrometer Surface Structures in Copper
    (Amsterdam [u.a.] : Elsevier, 2012) Ehrhardt, M.; Lorenz, P.; Frost, F.; Zimmer, K.
    Micro- and submicrometer structures have been transferred from nickel foils into solid copper surfaces by laser microembossing. The developed arrangement for laser microembossing allows a large-area replication using multi- pulse laser scanning scheme, guaranties a low contamination of the embossed surface and enables the utilization of thick workpieces. In the micrometer range the replicated patterns feature a high accuracy regarding the shape. A significant difference between the master and the replication pattern could be observed for the laser embossing of submicrometer patterns. In conclusion, the results show that the proposed laser embossing process is a promising method with a number of applications in microengineering.
  • Item
    Phenomenology of iron-assisted ion beam pattern formation on Si(001)
    (Bristol : IOP, 2011) MacKo, S.; Frost, F.; Engler, M.; Hirsch, D.; Höche, T.; Grenzer, J.; Michely, T.
    Pattern formation on Si(001) through 2 keV Kr+ ion beam erosion of Si(001) at an incident angle of # = 30° and in the presence of sputter codeposition or co-evaporation of Fe is investigated by using in situ scanning tunneling microscopy, ex situ atomic force microscopy and electron microscopy. The phenomenology of pattern formation is presented, and experiments are conducted to rule out or determine the processes of relevance in ion beam pattern formation on Si(001) with impurities. Special attention is given to the determination of morphological phase boundaries and their origin. Height fluctuations, local flux variations, induced chemical inhomogeneities, silicide formation and ensuing composition-dependent sputtering are found to be of relevance for pattern formation.
  • Item
    Iron-assisted ion beam patterning of Si(001) in the crystalline regime
    (Bristol : IOP, 2012) Macko, S.; Grenzer, J.; Frost, F.; Engler, M.; Hirsch, D.; Fritzsche, M.; Mücklich, A.; Michely, T.
    We present ion beam erosion experiments on Si(001) with simultaneous sputter co-deposition of steel at 660 K. At this temperature, the sample remains within the crystalline regime during ion exposure and pattern formation takes place by phase separation of Si and iron-silicide. After an ion fluence of F ≈ 5.9×10 21 ions m -2, investigations by atomic force microscopy and scanning electron microscopy identify sponge, segmented wall and pillar patterns with high aspect ratios and heights of up to 200 nm. Grazing incidence x-ray diffraction and transmission electron microscopy reveal the structures to be composed of polycrystalline iron-silicide. The observed pattern formation is compared to that in the range of 140-440K under otherwise identical conditions, where a thin amorphous layer forms due to ion bombardment.
  • Item
    Ripple coarsening on ion beam-eroded surfaces
    (New York, NY [u.a.] : Springer, 2014) Teichmann, M.; Lorbeer, J.; Frost, F.; Rauschenbach, B.
    Abstract: The temporal evolution of ripple pattern on Ge, Si, Al2O3, and SiO2 by low-energy ion beam erosion with Xe + ions is studied. The experiments focus on the ripple dynamics in a fluence range from 1.1 × 1017 cm-2 to 1.3 × 1019 cm-2 at ion incidence angles of 65° and 75° and ion energies of 600 and 1,200 eV. At low fluences a short-wavelength ripple structure emerges on the surface that is superimposed and later on dominated by long wavelength structures for increasing fluences. The coarsening of short wavelength ripples depends on the material system and angle of incidence. These observations are associated with the influence of reflected primary ions and gradient-dependent sputtering. The investigations reveal that coarsening of the pattern is a universal behavior for all investigated materials, just at the earliest accessible stage of surface evolution.
  • Item
    Pattern formation on Ge by low energy ion beam erosion
    (Bristol : IOP, 2013) Teichmann, M.; Lorbeer, J.; Ziberi, B.; Frost, F.; Rauschenbach, B.
    Modification of nanoscale surface topography is inherent to low-energy ion beam erosion processes and is one of the most important fields of nanotechnology. In this report a comprehensive study of surface smoothing and self-organized pattern formation on Ge(100) by using different noble gases ion beam erosion is presented. The investigations focus on low ion energies ( 2000 eV) and include the entire range of ion incidence angles. It is found that for ions (Ne, Ar) with masses lower than the mass of the Ge target atoms, no pattern formation occurs and surface smoothing is observed for all angles of ion incidence. In contrast, for erosion with higher mass ions (Kr, Xe), ripple formation starts at incidence angles of about 65° depending on ion energy. At smaller incident angles surface smoothing occurs again. Investigations of the surface dynamics for specific ion incidence angles by changing the ion fluence over two orders of magnitude gives a clear evidence for coarsening and faceting of the surface pattern. Both observations indicate that gradient-dependent sputtering and reflection of primary ions play crucial role in the pattern evolution, just at the lowest accessible fluences. The results are discussed in relation to recently proposed redistributive or stress-induced models for pattern formation. In addition, it is argued that a large angular variation of the sputter yield and reflected primary ions can significantly contribute to pattern formation and evolution as nonlinear and non-local processes as supported by simulation of sputtering and ion reflection.