Search Results

Now showing 1 - 10 of 10
  • Item
    Low temperature isolation of a dinuclear silver complex of the cyclotetraphosphane [ClP(μ-PMes*)]2
    (London : Soc., 2015) Bresien, Jonas; Schulz, Axel; Villinger, Alexander
    The reaction of the cyclotetraphosphane [ClP(μ-PMes*)]2 (1, Mes* = 2,4,6-tri-tert-butylphenyl) with Ag[Al(ORF)4] (RF = CH(CF3)2) resulted in a labile, dinuclear silver complex of 1, which eliminates AgCl above −30 °C. Its properties were investigated by spectroscopic methods, single crystal X-ray diffraction and DFT calculations.
  • Item
    Correction: Increasing steric demand through flexible bulk – primary phosphanes with 2,6-bis(benzhydryl)phenyl backbones
    (London : Soc., 2019) Bresien, Jonas; Goicoechea, Jose M.; Hinz, Alexander; Scharnhölz, Moritz T.; Schulz, Axel; Suhrbier, Tim; Villinger, Alexander
    Correction for 'Increasing steric demand through flexible bulk-primary phosphanes with 2,6-bis(benzhydryl)phenyl backbones' by Jonas Bresien et al., Dalton Trans., 2019, 48, 3786-3794. © 2019 The Royal Society of Chemistry.
  • Item
    Synthetic strategies to bicyclic tetraphosphanes using P1, P2 and P4 building blocks
    (London : Soc., 2015) Bresien, Jonas; Faust, Kirill; Hering-Junghans, Christian; Rothe, Julia; Schulz, Axel; Villinger, Alexander
    Different reactions of Mes* substituted phosphanes (Mes* = 2,4,6-tri-tert-butylphenyl) led to the formation of the bicyclic tetraphosphane Mes*P4Mes* (5) and its unknown Lewis acid adduct 5·GaCl3. In this context, the endo–exo isomer of 5 was fully characterized for the first time. The synthesis was achieved by reactions involving “self-assembly” of the P4 scaffold from P1 building blocks (i.e. primary phosphanes) or by reactions starting from P2 or P4 scaffolds (i.e. a diphosphene or cyclic tetraphosphane). Furthermore, interconversion between the exo–exo and endo–exo isomer were studied by 31P NMR spectroscopy. All compounds were fully characterized by experimental as well as computational methods.
  • Item
    Reduction of dichloro(diaza-phospha)stibanes – isolation of a donor-stabilized distibenium dication
    (London : Soc., 2016) Hinz, Alexander; Rothe, Julia; Schulz, Axel; Villinger, Alexander
    A reaction of antimonytrichloride SbCl3 with potassium bis(terphenylimino)phosphide K[(TerN)2P] smoothly afforded a novel class of mixed diazadipnictanes, namely dichloro(diaza-phospha)stibane [Ter2N2P(III)Sb(III)Cl2], which is considered to exist as open chain-like and cyclic isomers in an equilibrium. [Ter2N2PSbCl2] is a versatile starting material for reduction and halide abstraction experiments. Halide abstraction led to the formation of a cyclic diazastibaphosphenium cation [P(μ-NTer)2SbCl]+. Upon reduction of [Ter2N2PSbCl2], the transient existence of the novel mixed biradicaloid [P(μ-NTer)2Sb] was proven by a trapping experiment with an alkyne, while reduction in the absence of trapping agents afforded the eight-membered heterocycle [Sb2-{μ-(TerN)2P}2]. This constitutional isomer of a dimerized biradicaloid features a bonding situation that indicates the presence of a donor-stabilized [Sb2]2+ ion.
  • Item
    Highly selective visible light-induced Ti–O bond splitting in an ansa-titanocene dihydroxido complex
    (Cambridge : Soc., 2015) Godemann, Christian; Dura, Laura; Hollmann, Dirk; Grabow, Kathleen; Bentrup, Ursula; Jiao, Haijun; Schulz, Axel; Brückner, Angelika; Beweries, Torsten
    Irradiation of a substituted ansa-titanocene(IV) dihydroxido complex with visible light induces Ti–O bond dissociation. In contrast to previous studies on structurally similar unbridged complexes, no side reactions are observed and formation of the Ti(III) species is highly selective. The formation of OH radicals was proved using a biradicaloid species.
  • Item
    A Systematic Survey of the Reactivity of Chlorinated N2P2, NP3 and P4 Ring Systems
    (Weinheim : Wiley-VCH, 2019) Bresien, Jonas; Eickhoff, Liesa; Schulz, Axel; Suhrbier, Tim; Villinger, Alexander
    The reactivity of the four-membered NP3 ring system [RN(μ-PCl)2PR] (R=Mes*=2,4,6-tri-tert-butylphenyl) towards Lewis acids, Lewis bases, and reducing agents was investigated. Comparisons with the literature-known, analogous cyclic compounds [ClP(μ-NR)]2 (R=Ter=2,6-dimesitylphenyl) and [ClP(μ-PR)]2 (R=Mes*) are drawn, to obtain a better systematic understanding of the reactivity of cyclic NP species. Apart from experimental results, DFT computations are discussed to further the insight into bonding and electronic structure of these compounds. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Accessing heavy allyl-analogous [(TerN)2E]− (E = Sb, Bi) ions and their reactivity towards ECl3
    (Cambridge : Soc., 2015) Hinz, Alexander; Schulz, Axel; Villinger, Alexander
    The attempted preparation of the biradicaloid [E(μ-NTer)]2 (E = Sb, Bi) yielded salts of the anion [(TerN)2E]−. These heteroatom allyl analogues could be further utilized in the reaction with pnictogen(III) chlorides to form the first 1,3-dichloro-1-bisma-3-stiba-2,4-diazane [ClSb(μ-NTer)2BiCl].
  • Item
    A chemical reaction controlled by light-activated molecular switches based on heterocyclopentanediyls
    (Cambridge : RSC, 2019) Bresien, Jonas; Kröger-Badge, Thomas; Lochbrunner, Stefan; Michalik, Dirk; Müller, Henrik; Schulz, Axel; Zander, Edgar
    Molecular switches are molecules that can reversibly be shifted between at least two stable states with different physical and chemical properties, making them interesting for application as chemical sensors or molecular machines. We recently discovered that five-membered, cyclic biradicals based on group 15 elements are efficient and robust photochemical switches that can be activated by red light. The quantum yield of the photo-isomerization is as high as 24.6%, and the thermal equilibration of the photo-activation product proceeds rapidly at ambient temperature. The fully reversible process was studied by experimental and high-level ab initio techniques. We could further demonstrate that the biradical character could be completely turned on and off, so the system could be applied to control chemical equilibria that involve activation products of the cyclic biradicals. © 2019 The Royal Society of Chemistry.
  • Item
    Zwitterionic and biradicaloid heteroatomic cyclopentane derivatives containing different group 15 elements
    (Cambridge : RSC, 2015) Hinz, Alexander; Schulz, Axel; Villinger, Alexander
    The formal cyclopentane-1,3-diyl derivatives [E1(μ-NTer)2({E2C} = NDmp)] (Ter = 2,6-dimesityl-phenyl, Dmp = 2,6-dimethylphenyl) were prepared by 1,1-insertion of CNDmp into the N–E2 bond of [E1(μ-NTer)2E2] (E1 = N, P; E2 = P, As). The insertion does not occur for E1 = E2 = As or E2 = Sb. Dependent on the choice of formal radical centres E, either a biradicaloid or a zwitterion was obtained. The biradicaloid features a P and an As radical center and its biradical character was established by computations as well as characteristic reactivity with respect to the formation of a housane derivative and the activation of molecules bearing multiple bonds, which was demonstrated using the example of PCtBu. In contrast, the formally N,As- and N,P-centered biradicaloids are better regarded as zwitterionic species in accord with computations and diminished reactivity, as neither housane formation nor activation of multiple bonds could be observed.
  • Item
    Parahydrogen-induced polarization with a metal-free P–P biradicaloid
    (Cambridge : RSC Publ., 2019) Zhivonitko, Vladimir V.; Bresien, Jonas; Schulz, Axel; Koptyug, Igor V.
    Metal-free H2 activations are unusual but interesting for catalytic transformations, particularly in parahydrogen-based nuclear spin hyperpolarization techniques. We demonstrate that metal-free singlet phosphorus biradicaloid, [P(μ-NTer)]2, provides pronounced 1H and 31P hyperpolarization while activating the parahydrogen molecules. A brief analysis of the resulting NMR signals and the important kinetic parameters are presented.