Search Results

Now showing 1 - 10 of 22
  • Item
    Bayesian inference for spectral projectors of the covariance matrix
    (Ithaca, NY : Cornell University Library, 2018) Silin, Igor; Spokoiny, Vladimir
    Let X1,…,Xn be an i.i.d. sample in Rp with zero mean and the covariance matrix Σ∗. The classical PCA approach recovers the projector P∗J onto the principal eigenspace of Σ∗ by its empirical counterpart ˆPJ. Recent paper [24] investigated the asymptotic distribution of the Frobenius distance between the projectors ∥ˆPJ−P∗J∥2, while [27] offered a bootstrap procedure to measure uncertainty in recovering this subspace P∗J even in a finite sample setup. The present paper considers this problem from a Bayesian perspective and suggests to use the credible sets of the pseudo-posterior distribution on the space of covariance matrices induced by the conjugated Inverse Wishart prior as sharp confidence sets. This yields a numerically efficient procedure. Moreover, we theoretically justify this method and derive finite sample bounds on the corresponding coverage probability. Contrary to [24, 27], the obtained results are valid for non-Gaussian data: the main assumption that we impose is the concentration of the sample covariance ˆΣ in a vicinity of Σ∗. Numerical simulations illustrate good performance of the proposed procedure even on non-Gaussian data in a rather challenging regime.
  • Item
    Gaussian processes with multidimensional distribution inputs via optimal transport and Hilbertian embedding
    (Ithaca, NY : Cornell University Library, 2020) Bachoc, François; Suvorikova, Alexandra; Ginsbourger, David; Loubes, Jean-Michel; Spokoiny, Vladimir
    In this work, we propose a way to construct Gaussian processes indexed by multidimensional distributions. More precisely, we tackle the problem of defining positive definite kernels between multivariate distributions via notions of optimal transport and appealing to Hilbert space embeddings. Besides presenting a characterization of radial positive definite and strictly positive definite kernels on general Hilbert spaces, we investigate the statistical properties of our theoretical and empirical kernels, focusing in particular on consistency as well as the special case of Gaussian distributions. A wide set of applications is presented, both using simulations and implementation with real data.
  • Item
    Bootstrap confidence sets under a model misspecification
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Spokoiny, Vladimir; Zhilova, Mayya
    A multiplier bootstrap procedure for construction of likelihood-based confidence sets is considered for finite samples and possible model misspecification. Theoretical results justify the bootstrap consistency for small or moderate sample size and allow to control the impact of the parameter dimension: the bootstrap approximation works if the ratio of cube of the parameter dimension to the sample size is small. The main result about bootstrap consistency continues to apply even if the underlying parametric model is misspecified under the so called Small Modeling Bias condition. In the case when the true model deviates significantly from the considered parametric family, the bootstrap procedure is still applicable but it becomes a bit conservative: the size of the constructed confidence sets is increased by the modeling bias. We illustrate the results with numerical examples of misspecified constant and logistic regressions.
  • Item
    Spatially adaptive estimation via fitted local likelihood techniques
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Katkovnik, Vladimir; Spokoiny, Vladimir
    This paper offers a new technique for spatially adaptive estimation. The local likelihood is exploited for nonparametric modelling of observations and estimated signals. The approach is based on the assumption of a local homogeneity of the signal: for every point there exists a neighborhood in which the signal can be well approximated by a constant. The fitted local likelihood statistics is used for selection of an adaptive size of this neighborhood. The algorithm is developed for quite a general class of observations subject to the exponential distribution. The estimated signal can be uni- and multivariable. We demonstrate a good performance of the new algorithm for Poissonian image denoising and compare of the new method versus the intersection of confidence interval $(ICI) $ technique that also exploits a selection of an adaptive neighborhood for estimation.
  • Item
    Statistical inference for Bures--Wasserstein barycenters
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Kroshnin, Alexey; Spokoiny, Vladimir; Suvorikova, Alexandra
    In this work we introduce the concept of Bures--Wasserstein barycenter $Q_*$, that is essentially a Fréchet mean of some distribution $P$ supported on a subspace of positive semi-definite $d$-dimensional Hermitian operators $H_+(d)$. We allow a barycenter to be constrained to some affine subspace of $H_+(d)$, and we provide conditions ensuring its existence and uniqueness. We also investigate convergence and concentration properties of an empirical counterpart of $Q_*$ in both Frobenius norm and Bures--Wasserstein distance, and explain, how the obtained results are connected to optimal transportation theory and can be applied to statistical inference in quantum mechanics.
  • Item
    Adaptive gradient descent for convex and non-convex stochastic optimization
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Ogaltsov, Aleksandr; Dvinskikh, Darina; Dvurechensky, Pavel; Gasnikov, Alexander; Spokoiny, Vladimir
    In this paper we propose several adaptive gradient methods for stochastic optimization. Our methods are based on Armijo-type line search and they simultaneously adapt to the unknown Lipschitz constant of the gradient and variance of the stochastic approximation for the gradient. We consider an accelerated gradient descent for convex problems and gradient descent for non-convex problems. In the experiments we demonstrate superiority of our methods to existing adaptive methods, e.g. AdaGrad and Adam.
  • Item
    Diffusion tensor imaging : structural adaptive smoothing
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2007) Tabelow, Karsten; Polzehl, Jörg; Spokoiny, Vladimir; Voss, Henning U.
    Diffusion Tensor Imaging (DTI) data is characterized by a high noise level. Thus, estimation errors of quantities like anisotropy indices or the main diffusion direction used for fiber tracking are relatively large and may significantly confound the accuracy of DTI in clinical or neuroscience applications. Besides pulse sequence optimization, noise reduction by smoothing the data can be pursued as a complementary approach to increase the accuracy of DTI. Here, we suggest an anisotropic structural adaptive smoothing procedure, which is based on the Propagation-Separation method and preserves the structures seen in DTI and their different sizes and shapes. It is applied to artificial phantom data and a brain scan. We show that this method significantly improves the quality of the estimate of the diffusion tensor and hence enables one either to reduce the number of scans or to enhance the input for subsequent analysis such as fiber tracking.
  • Item
    Adaptive manifold clustering
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Besold, Franz; Spokoiny, Vladimir
    Clustering methods seek to partition data such that elements are more similar to elements in the same cluster than to elements in different clusters. The main challenge in this task is the lack of a unified definition of a cluster, especially for high dimensional data. Different methods and approaches have been proposed to address this problem. This paper continues the study originated by [6] where a novel approach to adaptive nonparametric clustering called Adaptive Weights Clustering (AWC) was offered. The method allows analyzing high-dimensional data with an unknown number of unbalanced clusters of arbitrary shape under very weak modeling as-sumptions. The procedure demonstrates a state-of-the-art performance and is very efficient even for large data dimension D. However, the theoretical study in [6] is very limited and did not re-ally address the question of efficiency. This paper makes a significant step in understanding the remarkable performance of the AWC procedure, particularly in high dimension. The approach is based on combining the ideas of adaptive clustering and manifold learning. The manifold hypoth-esis means that high dimensional data can be well approximated by a d-dimensional manifold for small d helping to overcome the curse of dimensionality problem and to get sharp bounds on the cluster separation which only depend on the intrinsic dimension d. We also address the problem of parameter tuning. Our general theoretical results are illustrated by some numerical experiments.
  • Item
    Locally time homogeneous time series modelling
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Elagin, Mstislav; Spokoiny, Vladimir
    In this paper three locally adaptive estimation methods are applied to the problems of variance forecasting, value-at-risk analysis and volatility estimation within the context of nonstationary financial time series. A general procedure for the computation of critical values is given. Numerical results exhibit a very reasonable performance of the methods.
  • Item
    Stopping rules for accelerated gradient methods with additive noise in gradient
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Vasin, Artem; Gasnikov, Alexander; Spokoiny, Vladimir
    In this article, we investigate an accelerated first-order method, namely, the method of similar triangles, which is optimal in the class of convex (strongly convex) problems with a Lipschitz gradient. The paper considers a model of additive noise in a gradient and a Euclidean prox- structure for not necessarily bounded sets. Convergence estimates are obtained in the case of strong convexity and its absence, and a stopping criterion is proposed for not strongly convex problems.