Search Results

Now showing 1 - 10 of 95
  • Item
    Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates
    (London : Nature Publishing Group, 2016) Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; Van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens
    The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7−δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.
  • Item
    Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene
    (London : Nature Publishing Group, 2016) Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, Grzegorz
    We investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication.
  • Item
    Berry phase and band structure analysis of the Weyl semimetal NbP
    (London : Nature Publishing Group, 2016) Sergelius, Philip; Gooth, Johannes; Bäßler, Svenja; Zierold, Robert; Wiegand, Christoph; Niemann, Anna; Reith, Heiko; Shekhar, Chandra; Felser, Claudia; Yan, Binghai; Nielsch, Kornelius
    Weyl semimetals are often considered the 3D-analogon of graphene or topological insulators. The evaluation of quantum oscillations in these systems remains challenging because there are often multiple conduction bands. We observe de Haas-van Alphen oscillations with several frequencies in a single crystal of the Weyl semimetal niobium phosphide. For each fundamental crystal axis, we can fit the raw data to a superposition of sinusoidal functions, which enables us to calculate the characteristic parameters of all individual bulk conduction bands using Fourier transform with an analysis of the temperature and magnetic field-dependent oscillation amplitude decay. Our experimental results indicate that the band structure consists of Dirac bands with low cyclotron mass, a non-trivial Berry phase and parabolic bands with a higher effective mass and trivial Berry phase.
  • Item
    The vicinity of hyper-honeycomb β-Li2IrO3 to a three-dimensional Kitaev spin liquid state
    (London : Nature Publishing Group, 2016) Katukuri, Vamshi M.; Yadav, Ravi; Hozoi, Liviu; Nishimoto, Satoshi; van den Brink, Jeroen
    Due to the combination of a substantial spin-orbit coupling and correlation effects, iridium oxides hold a prominent place in the search for novel quantum states of matter, including, e.g., Kitaev spin liquids and topological Weyl states. We establish the promise of the very recently synthesized hyper-honeycomb iridate β-Li2IrO3 in this regard. A detailed theoretical analysis reveals the presence of large ferromagnetic first-neighbor Kitaev interactions, while a second-neighbor antiferromagnetic Heisenberg exchange drives the ground state from ferro to zigzag order via a three-dimensional Kitaev spin liquid and an incommensurate phase. Experiment puts the system in the latter regime but the Kitaev spin liquid is very close and reachable by a slight modification of the ratio between the second- and first-neighbor couplings, for instance via strain.
  • Item
    Coupled multiple-mode theory for s± pairing mechanism in iron based superconductors
    (London : Nature Publishing Group, 2016) Kiselev, M.N.; Efremov, D.V.; Drechsler, S.L.; van den Brink, Jeroen; Kikoin, K.
    We investigate the interplay between the magnetic and the superconducting degrees of freedom in unconventional multi-band superconductors such as iron pnictides. For this purpose a dynamical mode-mode coupling theory is developed based on the coupled Bethe-Salpeter equations. In order to investigate the region of the phase diagram not too far from the tetracritical point where the magnetic spin density wave, (SDW) and superconducting (SC) transition temperatures coincide, we also construct a Ginzburg-Landau functional including both SC and SDW fluctuations in a critical region above the transition temperatures. The fluctuation corrections tend to suppress the magnetic transition, but in the superconducting channel the intraband and interband contribution of the fluctuations nearly compensate each other.
  • Item
    Signatures of a magnetic field-induced unconventional nematic liquid in the frustrated and anisotropic spin-chain cuprate LiCuSbO4
    (London : Nature Publishing Group, 2017) Grafe, H.-J.; Nishimoto, S.; Iakovleva, M.; Vavilova, E.; Spillecke, L.; Alfonsov, A.; Sturza, M.-I.; Wurmehl, S.; Nojiri, H.; Rosner, H.; Richter, J.; Rößler, U.K.; Drechsler, S.-L.; Kataev, V.; Büchner, B.
    Modern theories of quantum magnetism predict exotic multipolar states in weakly interacting strongly frustrated spin-1/2 Heisenberg chains with ferromagnetic nearest neighbor (NN) inchain exchange in high magnetic fields. Experimentally these states remained elusive so far. Here we report strong indications of a magnetic field-induced nematic liquid arising above a field of ~13 T in the edge-sharing chain cuprate LiSbCuO4 ≡ LiCuSbO4. This interpretation is based on the observation of a field induced spin-gap in the measurements of the 7Li NMR spin relaxation rate T1−1 as well as a contrasting field-dependent power-law behavior of T1−1 vs. T and is further supported by static magnetization and ESR data. An underlying theoretical microscopic approach favoring a nematic scenario is based essentially on the NN XYZ exchange anisotropy within a model for frustrated spin-1/2 chains and is investigated by the DMRG technique. The employed exchange parameters are justified qualitatively by electronic structure calculations for LiCuSbO4.
  • Item
    Inductive flash-annealing of bulk metallic glasses
    (London : Nature Publishing Group, 2017) Kosiba, K.; Pauly, S.
    We developed a temperature-controlled inductive flash-annealing device, which heats bulk metallic glasses (BMGs) at defined rates of up to 200 K/s to a given temperature. Subsequent instantaneous quenching in water allows preserving the microstructures obtained at various stages of crystallization. One Zr-based and two CuZr-based BMGs were flash-annealed at the onset of crystallization with different heating rates in order to prepare advanced BMG-matrix composites. The highly reproducible composite microstructures contain uniformly dispersed crystals and a narrow crystal size distribution. In order to assess the limitations of the present process, which mainly originate from non-uniform inductive heating, the skin depth was calculated. It is determined to be about 2.3 mm, which enables flash-annealing of rather bulky samples. The cooling rate was estimated from the interlamellar spacing of eutectic Al-Cu alloys to be on the order of 103 K/s. This ensures that decomposition of the microstructure during quenching is prevented. The present flash-annealing procedure is applicable to a wide variety of glass-forming liquids and has a large potential for tailoring the microstructure and, consequently, the mechanical properties of BMG-matrix composites.
  • Item
    Quasi one dimensional dirac electrons on the surface of Ru2 Sn3
    (London : Nature Publishing Group, 2014) Gibson, Q.D.; Evtushinsky, D.; Yaresko, A.N.; Zabolotnyy, V.B.; Ali, Mazhar N.; Fuccillo, M.K.; Van den Brink, J.; Büchner, B.; Cava, R.J.; Borisenko, S.V.
    We present an ARPES study of the surface states of Ru2Sn3, a new type of a strong 3D topological insulator (TI). In contrast to currently known 3D TIs, which display two-dimensional Dirac cones with linear isotropic dispersions crossing through one point in the surface Brillouin Zone (SBZ), the surface states on Ru2Sn3 are highly anisotropic, displaying an almost flat dispersion along certain high-symmetry directions. This results in quasi-one dimensional (1D) Dirac electronic states throughout the SBZ that we argue are inherited from features in the bulk electronic structure of Ru2Sn3 where the bulk conduction bands are highly anisotropic. Unlike previous experimentally characterized TIs, the topological surface states of Ru2Sn3 are the result of a d-p band inversion rather than an s-p band inversion. The observed surface states are the topological equivalent to a single 2D Dirac cone at the surface Brillouin zone.
  • Item
    A new strategy for silver deposition on Au nanoparticles with the use of peroxidase-mimicking DNAzyme monitored by Localized Surface Plasmon Resonance technique
    (Basel : MDPI, 2017) Kosman, Joanna; Jatschka, Jacqueline; Csáki, Andrea; Fritzsche, Wolfgang; Juskowiak, Bernard; Stranik, Ondrej
    Peroxidase-mimicking DNAzyme was applied as a catalyst of silver deposition on gold nanoparticles. This DNAzyme is formed when hemin binds to the G-quadruplex-forming DNA sequence. Such a system is able to catalyze a redox reaction with a one- or two-electron transfer. The process of silver deposition was monitored via a localized surface plasmon resonance technique (LSPR), which allows one to record scattering spectrum of a single nanoparticle. Our study showed that DNAzyme is able to catalyze silver deposition. The AFM experiments proved that DNAzyme induced the deposition of silver shells of approximately 20 nm thickness on Au nanoparticles (AuNPs). Such an effect is not observed when hemin is absent in the system. However, we noticed non-specific binding of hemin to the capture oligonucleotides on a gold NP probe that also induced some silver deposition, even though the capture probe was unable to form G-quadruplex. Analysis of SEM images indicated that the surface morphology of the silver layer deposited by DNAzyme is different from that obtained for hemin alone. The proposed strategy of silver layer synthesis on gold nanoparticles catalyzed by DNAzyme is an innovative approach and can be applied in bioanalysis (LSPR, electrochemistry) as well as in material sciences.
  • Item
    High field superconducting properties of Ba(Fe1-xCox)2As2 thin films
    (London : Nature Publishing Group, 2015) Hänisch, Jens; Iida, Kazumasa; Kurth, Fritz; Reich, Elke; Tarantini, Chiara; Jaroszynski, Jan; Förster, Tobias; Fuchs, Günther; Hühne, Ruben; Grinenko, Vadim; Schultz, Ludwig; Holzapfel, Bernhard
    The film investigated grew phase-pure and highly textured with in-plane and out-of-plane full width at half maximum, FWHM, of = 0.74° and = 0.9°, Suppl. S1. The sample, however, does contain a large density of ab-planar defects, as revealed by transition electron microscope (TEM) images of focused ion beam (FIB) cuts near the microbridges, Fig. 1. These defects are presumably stacking faults (i.e. missing FeAs layers)20. The reason for this defect formation (also observed on technical substrates)21 is not fully understood. Possible reasons are a partial As loss during deposition22, and relaxation processes in combination with the Fe buffer layer23. Estimating the distance between these intergrowths leads to values varying between 5 and 10 nm. Between the planar defects, an orientation contrast is visible in TEM (inset Fig. 1b), i.e. the brighter crystallites are slightly rotated either around (010) (out-of-plane spread, ) or around (001) (in-plane spread, ) and enclosed by dislocation networks or small-angle GBs. Since the crystallites are sandwiched between planar defects, an in-plane misorientation is most likely. The out-of-plane misorientation, on the other hand, is visible as a slight tilt of the ab-planar defects with respect to each other, especially in the upper part of the sample. No globular or columnar precipitates were found.