Search Results

Now showing 1 - 6 of 6
  • Item
    A kinetic equation for the distribution of interaction clusters in rarefied gases
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Patterson, Robert I.A.; Simonella, Sergio; Wagner, Wolfgang
    We consider a stochastic particle model governed by an arbitrary binary interaction kernel. A kinetic equation for the distribution of interaction clusters is established. Under some additional assumptions a recursive representation of the solution is found. For particular choices of the interaction kernel (including the Boltzmann case) several explicit formulas are obtained. These formulas are confirmed by numerical experiments. The experiments are also used to illustrate various conjectures and open problems.
  • Item
    Lagrange multiplier and singular limit of double obstacle problems for Allen-Cahn equation with constraint
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Farshbaf Shaker, Mohammad Hassan; Takeshi, Takeshi; Yamazaki, Noriaki; Kenmochi, Nobuyuki
    We consider an Allen--Cahn equation with a constraint of double obstacle-type. This constraint is a subdifferential of an indicator function on the closed interval, which is a multivalued function. In this paper we study the properties of the Lagrange multiplier to our equation. Also, we consider the singular limit of our system and clarify the limit of the solution and the Lagrange multiplier to our double obstacle problem. Moreover, we give some numerical experiments of our problem by using the Lagrange multiplier.
  • Item
    A stochastic algorithm without time discretization error for the Wigner equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Muscato, Orazio; Wagner, Wolfgang
    Stochastic particle methods for the numerical treatment of the Wigner equation are considered. The approximation properties of these methods depend on several numerical parameters. Such parameters are the number of particles, a time step (if transport and other processes are treated separately) and the grid size (used for the discretization of the position and the wavevector). A stochastic algorithm without time discretization error is introduced. Its derivation is based on the theory of piecewise deterministic Markov processes. Numerical experiments are performed in a one-dimensional test case. Approximation properties with respect to the grid size and the number of particles are studied. Convergence of a time-splitting scheme to the no-splitting algorithm is demonstrated. The no-splitting algorithm is shown to be more efficient in terms of computational effort.
  • Item
    A class of stochastic algorithms for the Wigner equation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Muscato, Orazio; Wagner, Wolfgang
    A class of stochastic algorithms for the numerical treatment of the Wigner equation is introduced. The algorithms are derived using the theory of pure jump processes with a general state space. The class contains several new algorithms as well as some of the algorithms previously considered in the literature. The approximation error and the efficiency of the algorithms are analyzed. Numerical experiments are performed in a benchmark test case, where certain advantages of the new class of algorithms are demonstrated.
  • Item
    Numerical methods for accurate description of ultrashort pulses in optical fibers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Amiranashvili, Shalva; Radziunas, Mindaugas; Bandelow, Uwe; C̆iegis, Raimondas
    We consider a one-dimensional first-order nonlinear wave equation (the so-called forward Maxwell equation, FME) that applies to a few-cycle optical pulse propagating along a preferred direction in a nonlinear medium, e.g., ultrashort pulses in nonlinear fibers. The model is a good approximation to the standard second-order wave equation under assumption of weak nonlinearity. We compare FME to the commonly accepted generalized nonlinear Schrödinger equation, which quantifies the envelope of a quickly oscillating wave field based on the slowly varying envelope approximation. In our numerical example, we demonstrate that FME, in contrast to the envelope model, reveals new spectral lines when applied to few-cycle pulses. We analyze and compare pseudo-spectral numerical schemes employing symmetric splitting for both models. Finally, we adopt these schemes to a parallel computation and discuss scalability of the parallelization.
  • Item
    Numerical algorithms for Schrödinger equation with artificial boundary conditions
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Čiegis, Raimondas; Laukaitytė, Inga; Radziunas, Mindaugas
    We consider a one-dimensional linear Schrödinger problem defined on an infinite domain and approximated by the Crank-Nicolson type finite difference scheme. To solve this problem numerically we restrict the computational domain by introducing the reflective, absorbing or transparent artificial boundary conditions. We investigate the conservativity of the discrete scheme with respect to the mass and energy of the solution. Results of computational experiments are presented and the efficiency of different artificial boundary conditions is discussed.