Search Results

Now showing 1 - 10 of 41
  • Item
    Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features
    (London : Royal Society of Chemistry, 2020) Mora-Boza, A.; Włodarczyk-Biegun, M.K.; Del Campo, A.; Vázquez-Lasa, B.; Román, J.S.
    The fabrication of intricate and long-term stable 3D polymeric scaffolds by a 3D printing technique is still a challenge. In the biomedical field, hydrogel materials are very frequently used because of their excellent biocompatibility and biodegradability, however the improvement of their processability and mechanical properties is still required. This paper reports the fabrication of dual crosslinked 3D scaffolds using a low concentrated (<10 wt%) ink of gelatin methacryloyl (GelMA)/chitosan and a novel crosslinking agent, glycerylphytate (G1Phy) to overcome the current limitations in the 3D printing field using hydrogels. The applied methodology consisted of a first ultraviolet light (UV) photopolymerization followed by a post-printing ionic crosslinking treatment with G1Phy. This crosslinker provides a robust framework and avoids the necessity of neutralization with strong bases. The blend ink showed shear-thinning behavior and excellent printability in the form of a straight and homogeneous filament. UV curing was undertaken simultaneously to 3D deposition, which enhanced precision and shape fidelity (resolution ≈150 μm), and prevented the collapse of the subsequent printed layers (up to 28 layers). In the second step, the novel G1Phy ionic crosslinker agent provided swelling and long term stability properties to the 3D scaffolds. The multi-layered printed scaffolds were mechanically stable under physiological conditions for at least one month. Preliminary in vitro assays using L929 fibroblasts showed very promising results in terms of adhesion, spreading, and proliferation in comparison to other phosphate-based traditional crosslinkers (i.e. TPP). We envision that the proposed combination of the blend ink and 3D printing approach can have widespread applications in the regeneration of soft tissues.
  • Item
    Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings
    (Columbus, Ohio : American Chemical Society, 2017) Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J.; Rodriguez-Emmenegger, Cesar
    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
  • Item
    The mTOR and PP2A pathways regulate PHD2 phosphorylation to Fine-Tune HIF1α levels and colorectal cancer cell survival under hypoxia
    (Amsterdam : Elsevier, 2017) Di Conza, Giusy; Cafarello, Sarah Trusso; Loroch, Stefan; Mennerich, Daniela; Deschoemaeker, Sofie; Di Matteo, Mario; Ehling, Manuel; Gevaert, Kris; Prenen, Hans; Zahedi, Rene Peiman; Sickmann, Albert; Kietzmann, Thomas; Moretti, Fabiola; Mazzone, Massimiliano
    Oxygen-dependent HIF1α hydroxylation and degradation are strictly controlled by PHD2. In hypoxia, HIF1α partly escapes degradation because of low oxygen availability. Here, we show that PHD2 is phosphorylated on serine 125 (S125) by the mechanistic target of rapamycin (mTOR) downstream kinase P70S6K and that this phosphorylation increases its ability to degrade HIF1α. mTOR blockade in hypoxia by REDD1 restrains P70S6K and unleashes PP2A phosphatase activity. Through its regulatory subunit B55α, PP2A directly dephosphorylates PHD2 on S125, resulting in a further reduction of PHD2 activity that ultimately boosts HIF1α accumulation. These events promote autophagy-mediated cell survival in colorectal cancer (CRC) cells. B55α knockdown blocks neoplastic growth of CRC cells in vitro and in vivo in a PHD2-dependent manner. In patients, CRC tissue expresses higher levels of REDD1, B55α, and HIF1α but has lower phospho-S125 PHD2 compared with a healthy colon. Our data disclose a mechanism of PHD2 regulation that involves the mTOR and PP2A pathways and controls tumor growth.
  • Item
    Highly active and selective photochemical reduction of CO2 to CO using molecular-defined cyclopentadienone iron complexes
    (Cambridge : Soc., 2015) Rosas-Hernández, Alonso; Alsabeh, Pamela G.; Barsch, Enrico; Junge, Hernrik; Ludwig, Ralf; Beller, Matthias
    Herein, we report highly active (cyclopentadienone)iron–tricarbonyl complexes for CO2 photoreduction using visible light with an Ir complex as photosensitizer and TEOA as electron/proton donor. Turnover numbers (TON) of ca. 600 (1 h) with initial turnover frequencies (TOF) up to 22.2 min−1 were observed. Operando FTIR measurements allowed for the proposal of a plausible mechanism for catalyst activation.
  • Item
    Gli protein activity is controlled by multisite phosphorylation in vertebrate hedgehog signaling
    (Amsterdam : Elsevier, 2013) Niewiadomski, Pawel; Kong, Jennifer H.; Ahrends, Robert; Ma, Yan; Humke, Eric W.; Khan, Sohini; Teruel, Mary N.; Novitch, Bennett G.; Rohatgi, Rajat
    Gli proteins are transcriptional effectors of the Hedgehog (Hh) pathway in both normal development and cancer. We describe a program of multisite phosphorylation that regulates the conversion of Gli proteins into transcriptional activators. In the absence of Hh ligands, Gli activity is restrained by the direct phosphorylation of six conserved serine residues by protein kinase A (PKA), a master negative regulator of the Hh pathway. Activation of signaling leads to a global remodeling of the Gli phosphorylation landscape: the PKA target sites become dephosphorylated, while a second cluster of sites undergoes phosphorylation. The pattern of Gli phosphorylation can regulate Gli transcriptional activity in a graded fashion, suggesting a phosphorylation-based mechanism for how a gradient of Hh signaling in a morphogenetic field can be converted into a gradient of transcriptional activity.
  • Item
    Solvent-antisolvent interactions in metal halide perovskites
    (Cambridge : Soc., 2023) Bautista-Quijano, Jose Roberto; Telschow, Oscar; Paulus, Fabian; Vaynzof, Yana
    The fabrication of metal halide perovskite films using the solvent-engineering method is increasingly common. In this method, the crystallisation of the perovskite layer is triggered by the application of an antisolvent during the spin-coating of a perovskite precursor solution. Herein, we introduce the current state of understanding of the processes involved in the crystallisation of perovskite layers formed by solvent engineering, focusing in particular on the role of antisolvent properties and solvent-antisolvent interactions. By considering the impact of the Hansen solubility parameters, we propose guidelines for selecting the appropriate antisolvent and outline open questions and future research directions for the fabrication of perovskite films by this method.
  • Item
    A crystalline anionic complex of scandium nitride endometallofullerene: Experimental observation of single-bonded (Sc3N@Ih-C80−)2 dimers
    (Cambridge : Royal Society of Chemistry, 2016) Konarev, Dmitri V.; Zorina, Leokadiya V.; Khasanov, Salavat S.; Popov, Alexey A.; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N.
    Reduction of scandium nitride clusterfullerene, Sc3N@Ih-C80, by sodium fluorenone ketyl in the presence of cryptand[2,2,2] allows the crystallization of the {cryptand[2,2,2](Na+)}2(Sc3N@Ih-C80−)2·2.5C6H4Cl2 (1) salt. The Sc3N@Ih-C80˙− radical anions are dimerized to form single-bonded (Sc3N@Ih-C80−)2 dimers.
  • Item
    Accessing heavy allyl-analogous [(TerN)2E]− (E = Sb, Bi) ions and their reactivity towards ECl3
    (Cambridge : Soc., 2015) Hinz, Alexander; Schulz, Axel; Villinger, Alexander
    The attempted preparation of the biradicaloid [E(μ-NTer)]2 (E = Sb, Bi) yielded salts of the anion [(TerN)2E]−. These heteroatom allyl analogues could be further utilized in the reaction with pnictogen(III) chlorides to form the first 1,3-dichloro-1-bisma-3-stiba-2,4-diazane [ClSb(μ-NTer)2BiCl].
  • Item
    Single molecule level plasmonic catalysis – a dilution study of p-nitrothiophenol on gold dimers
    (Cambridge : Soc., 2015) Zhang, Zhenglong; Deckert-Gaudig, Tanja; Singh, Pushkar; Deckert, Volker
    Surface plasmons on isolated gold dimers can initiate intermolecular reactions of adsorbed p-nitrothiophenol. At the single molecule level when dimerization is not possible an intramolecular reaction can be observed. Experimental evidence indicates that plasmon-induced hot electrons provide the required activation energy.
  • Item
    Toxicological Responses of α-Pinene-Derived Secondary Organic Aerosol and Its Molecular Tracers in Human Lung Cell Lines
    (New York, NY : ACS Publ., 2021) Khan, Faria; Kwapiszewska, Karina; Zhang, Yue; Chen, Yuzhi; Lambe, Andrew T.; Kołodziejczyk, Agata; Jalal, Nasir; Rudzinski, Krzysztof; Martínez-Romero, Alicia; Fry, Rebecca C.; Surratt, Jason D.; Szmigielski, Rafal
    Secondary organic aerosol (SOA) is a major component of airborne fine particulate matter (PM2.5) that contributes to adverse human health effects upon inhalation. Atmospheric ozonolysis of α-pinene, an abundantly emitted monoterpene from terrestrial vegetation, leads to significant global SOA formation; however, its impact on pulmonary pathophysiology remains uncertain. In this study, we quantified an increasing concentration response of three well-established α-pinene SOA tracers (pinic, pinonic, and 3-methyl-1,2,3-butanetricarboxylic acids) and a full mixture of α-pinene SOA in A549 (alveolar epithelial carcinoma) and BEAS-2B (bronchial epithelial normal) lung cell lines. The three aforementioned tracers contributed ∼57% of the α-pinene SOA mass under our experimental conditions. Cellular proliferation, cell viability, and oxidative stress were assessed as toxicological end points. The three α-pinene SOA molecular tracers had insignificant responses in both cell types when compared with the α-pinene SOA (up to 200 μg mL-1). BEAS-2B cells exposed to 200 μg mL-1 of α-pinene SOA decreased cellular proliferation to ∼70% and 44% at 24- and 48-h post exposure, respectively; no changes in A549 cells were observed. The inhibitory concentration-50 (IC50) in BEAS-2B cells was found to be 912 and 230 μg mL-1 at 24 and 48 h, respectively. An approximate 4-fold increase in cellular oxidative stress was observed in BEAS-2B cells when compared with untreated cells, suggesting that reactive oxygen species (ROS) buildup resulted in the downstream cytotoxicity following 24 h of exposure to α-pinene SOA. Organic hydroperoxides that were identified in the α-pinene SOA samples likely contributed to the ROS and cytotoxicity. This study identifies the potential components of α-pinene SOA that likely modulate the oxidative stress response within lung cells and highlights the need to carry out chronic exposure studies on α-pinene SOA to elucidate its long-term inhalation exposure effects. © 2021 American Chemical Society.