Search Results

Now showing 1 - 10 of 15
  • Item
    Dynamic formation of oriented patches in chondrocyte cell cultures
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Grote, Marcus; Palumberi, Viviana; Wagner, Barbara; Barbero, Andrea; Martin, Ivan
    Growth factors have a significant impact not only on the growth dynamics but also on the phenotype of chondrocytes (Barbero et al. , J. Cell. Phys. 204, pp. 830-838, 2005). In particular, as chondrocyte populations approach confluence, the cells tend to align and form coherent patches. Starting from a mathematical model for fibroblast populations at equilibrium (Mogilner et al., Physica D 89, pp. 346-367, 1996), a dynamic continuum model with logistic growth is developed. Both linear stability analysis and numerical solutions of the time-dependent nonlinear integro-partial differential equation are used to identify the key parameters that lead to pattern formation in the model. The numerical results are compared quantitatively to experimental data by extracting statistical information on orientation, density and patch size through Gabor filters.
  • Item
    New results on the stability of quasi-static paths of a single particle system with Coulomb friction and persistent contact
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Schmid, Florian; Martins, J.A.C.; Rebrova, Natalia
    In this paper we announce some new mathematical results on the stability of quasi-static paths of a single particle linearly elastic system with Coulomb friction and persistent normal contact with a flat obstacle.A quasi-static path is said to be stable at some value of the load parameter if, for some finite interval of the load parameter thereafter, the dynamic solutions behave continuously with respect to the size of the initial perturbations (as in Lyapunov stability) and to the smallness of the rate of application of the external forces, $varepsilon$ (as in singular perturbation problems). In this paper we prove sufficient conditions for stability of quasi-static paths of a single particle linearly elastic system with Coulomb friction and persistent normal contact with a flat obstacle. The present system has the additional difficulty of its non-smoothness: the friction law is a multivalued operator and the dynamic evolutions of this system may have discontinuous accelerations.
  • Item
    A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Barrenechea, Gabriel R.; John, Volker; Knobloch, Petr
    An extension of the local projection stabilization (LPS) finite element method for convection-diffusion-reaction equations is presented and analyzed, both in the steady-state and the transient setting. In addition to the standard LPS method, a nonlinear crosswind diffusion term is introduced that accounts for the reduction of spurious oscillations. The existence of a solution can be proved and, depending on the choice of the stabilization parameter, also its uniqueness. Error estimates are derived which are supported by numerical studies. These studies demonstrate also the reduction of the spurious oscillations.
  • Item
    A jump-diffusion Libor model and tits robust calibration
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Belomestrny, Denis; Schoenmakers, John G.M.
    In this paper we propose a jump-diffusion Libor model with jumps in a high-dimensional space and test a stable non-parametric calibration algorithm which takes into account a given local covariance structure. The algorithm returns smooth and simply structured Lévy densities, and penalizes the deviation from the Libor market model. In practice, the procedure is FFT based, thus fast, easy to implement, and yields good results, particularly in view of the ill-posedness of the underlying inverse problem.
  • Item
    On the stability of periodic orbits in delay equations with large delay
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Sieber, Jan; Wolfrum, Matthias; Lichtner, Mark; Yanchuk, Serhiy
    We prove a necessary and sufficient criterion for the exponential stability of periodic solutions of delay differential equations with large delay. We show that for sufficiently large delay the Floquet spectrum near criticality is characterized by a set of curves, which we call asymptotic continuous spectrum, that is independent on the delay
  • Item
    On the role of the Helmholtz-decomposition in mixed methods for incompressible flows and a new variational crime
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Linke, Alexander
    According to the Helmholtz decomposition, the irrotational parts of the momentum balance equations of the incompressible Navier-Stokes equations are balanced by the pressure gradient. Unfortunately, nearly all mixed methods for incompressible flows violate this fundamental property, resulting in the well-known numerical instability of poor mass conservation. The origin of this problem is the lack of L2-orthogonality between discretely divergence-free velocities and irrotational vector fields. In order to cure this, a new variational crime using divergence-free velocity reconstructions is proposed. Applying lowest order Raviart-Thomas velocity reconstructions to the nonconforming Crouzeix-Raviart element allows to construct a cheap flow discretization for general 2d and 3d simplex meshes that possesses the same advantageous robustness properties like divergence-free flow solvers. In the Stokes case, optimal a-priori error estimates for the velocity gradients and the pressure are derived. Moreover, the discrete velocity is independent of the continuous pressure. Several detailed linear and nonlinear numerical examples illustrate the theoretical findings.
  • Item
    Rate-independent evolution of sets
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Rossi, Riccarda; Stefanelli, Ulisse; Thomas, Marita
    The goal of this work is to analyze a model for the rate-independent evolution of sets with finite perimeter. The evolution of the admissible sets is driven by that of a given time-dependent set, which has to include the admissible sets and hence is to be understood as an external loading. The process is driven by the competition between perimeter minimization and minimization of volume changes. In the mathematical modeling of this process, we distinguish the adhesive case, in which the constraint that the (complement of) the `external load' contains the evolving sets is penalized by a term contributing to the driving energy functional, from the brittle case, enforcing this constraint. The existence of Energetic solutions for the adhesive system is proved by passing to the limit in the associated time-incremental minimization scheme. In the brittle case, this time-discretization procedure gives rise to evolving sets satisfying the stability condition, but it remains an open problem to additionally deduce energy-dissipation balance in the time-continuous limit. This can be obtained under some suitable quantification of data. The properties of the brittle evolution law are illustrated by numerical examples in two space dimensions.
  • Item
    An iterative method for the multipliers of periodic delay-differential equations and the analysis of a PDE milling model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Rott, Oliver; Jarlebring, Elisa
    Locally convergent iterative schemes have turned out to be very useful in the analysis of the characteristic roots of delay-differential equations (DDEs) with constant coefficients. In this work we present a locally convergent iterative scheme for the characteristic multipliers of periodic-coefficient DDEs. The method is an adaption of an iterative method called residual inverse iteration. The possibility to use this method stems from an observation that the characteristic matrix can be expressed with the fundamental solution of a differential equation. We apply the method to a coupled milling model containing a partial and an ordinary differential equation. The conclusion of the numerical results is that the stability diagram of the coupled model differs significantly from the combined stability diagrams for each subsystem
  • Item
    Spinodal dewetting of thin films with large interfacial slip : implications from the dispersion relation
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Rauscher, Markus; Blossey, Ralf; Münch, Andreas; Wagner, Barbara
    We compare the dispersion relations for spinodally dewetting thin liquid films for increasing magnitude of interfacial slip length in the lubrication limit. While the shape of the dispersion relation, in particular the position of the maximum, are equal for no-slip up to moderate slip lengths, the position of the maximum shifts to much larger wavelengths for large slip lengths. Here, we discuss the implications of this fact for recently developed methods to assess the disjoining pressure in spinodally unstable thin films by measuring the shape of the roughness power spectrum. For PS films on OTS covered Si wafers (with slip length $bapprox 1,mu$m) we predict a 20% shift of the position of the maximum of the power spectrum which should be detectable in experiments.
  • Item
    On a thermomechanical milling model
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2008) Chełminski, Krzysztof; Höberg, Dietmar; Rott, Oliver
    This paper deals with a new mathematical model to characterize the interaction between machine and workpiece in a milling process. The model consists of a harmonic oscillator equation for the dynamics of the cutter and a linear thermoelastic workpiece model. The coupling through the cutting force adds delay terms and further nonlinear effects. After a short derivation of the governing equations it is shown that the complete system admits a unique weak solution. A numerical solution strategy is outlined and complemented by numerical simulations of stable and unstable cutting conditions.